A surface plasmon polariton (SPP) is an excitation resulting from the coupling of light to a surface charge oscillation at a metal-dielectric interface. The excitation and detection of SPPs is foundational to the operating mechanism of a number of important technologies, most of which require SPP excitation via direct reflectance, commonly achieved via Attenuated Total Reflection (ATR) using the Kretschmann configuration. As a result, the accessible modes are fundamentally high-loss "leaky modes," presenting a critical performance barrier.
View Article and Find Full Text PDFFlexible and conductive biocompatible materials are attractive candidates for a wide range of biomedical applications including implantable electrodes, tissue engineering, and controlled drug delivery. Here, we demonstrate that chemical and electrochemical polymerization techniques can be combined to create highly versatile silk-conducting polymer (silk-CP) composites with enhanced conductivity and electrochemical stability. Interpenetrating silk-CP composites were first generated via in situ deposition of polypyrrole during chemical polymerization of pyrrole.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2013
Organic semiconductors have the unique ability to conduct both ionic and electronic charge carriers in thin films, an emerging advantage in applications such as light-emitting devices, transistors, and electrochromic devices, among others. Evidence suggests that the profiles of ions and electrochemical doping in the polymer film during operation significantly impact the performance and stability of the device. However, few studies have directly characterized ion profiles within LECs.
View Article and Find Full Text PDFIon profiles in polymer light-emitting electrochemical cells are known to significantly affect performance and stability, but are not easily measured. Here, secondary ion mass spectrometry is used to investigate ion profiles in both dynamic and chemically fixed junction devices. Results indicate lower reversibility of dynamic junctions and a more significant time delay for ion redistribution than previously expected, but confirm the complete immobilization of ions in chemically fixed junction devices.
View Article and Find Full Text PDFWe report color-tunable light-emitting devices employing CdSe/ZnS quantum dots (QDs) blended into a polymer light-emitting electrochemical cell (LEC) architecture. This novel structure circumvents the charge-tunneling barrier of QDs to achieve bright, uniform, and highly voltage-independent electroluminescence, with nearly all emission generated by the QDs. By blending varying ratios of two QD materials that emit at different wavelengths, we demonstrate precise color control in a single layer device structure.
View Article and Find Full Text PDFWe report the synthesis of a soluble perylene-based small molecule for use as an n-type emissive material for organic optoelectronic device applications, and demonstrate the material in a light-emitting electrochemical cell configuration.
View Article and Find Full Text PDF