Background: Arteries chronically constricted in culture remodel to smaller diameters. Conversely, elevated luminal shear stress (SS) promotes outward remodeling of arteries in vivo and prevents inward remodeling in culture in a nitric oxide synthase (NOS)-dependent manner.
Objectives: To determine whether SS-induced prevention of inward remodeling in cultured arteries is specifically eNOS-dependent and requires dilation, and whether SS alters the expression of eNOS and other genes potentially involved in remodeling.
Squamous cell cancers account for more than half of all human cancers, and esophageal cancer is the sixth leading cause of cancer death worldwide. The majority of esophageal squamous cell carcinomas have identifiable p53 mutations, yet the same p53 mutations are found at comparable frequencies in precancerous dysplasia, indicating that transformation requires additional somatic changes yet to be defined. Here, we show that the zinc finger transcription factor Krüppel-like factor 5 (KLF5) transactivates NOTCH1 in the context of p53 mutation or loss.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
July 2008
Hyperhomocysteinemia (HHcy) impairs endothelium-dependent vasodilation by increasing reactive oxygen species, thereby reducing nitric oxide (NO.) bioavailability. It is unclear whether reduced expression or function of the enzyme that produces NO.
View Article and Find Full Text PDF