Curr Opin Immunol
December 2024
Colorectal cancer (CRC) is driven by genomic alterations in concert with dietary influences, with the gut microbiome implicated as an effector in disease development and progression. While meta-analyses have provided mechanistic insight into patients with CRC, study heterogeneity has limited causal associations. Using multi-omics studies on genetically controlled cohorts of mice, we identify diet as the major driver of microbial and metabolomic differences, with reductions in α diversity and widespread changes in cecal metabolites seen in high-fat diet (HFD)-fed mice.
View Article and Find Full Text PDFInfections cause catabolism of fat and muscle stores. Traditionally, studies have focused on understanding how the innate immune system contributes to energy stores wasting, while the role of the adaptive immune system remains elusive. In the present study, we examine the role of the adaptive immune response in adipose tissue wasting and cachexia using a murine model of the chronic parasitic infection Trypanosoma brucei, the causative agent of sleeping sickness.
View Article and Find Full Text PDFAnimals evolved two defense strategies to survive infections. Antagonistic strategies include immune resistance mechanisms that operate to kill invading pathogens. Cooperative or physiological defenses mediate host adaptation to the infected state, limiting physiological damage and disease, without killing the pathogen, and have been shown to cause asymptomatic carriage and transmission of lethal pathogens.
View Article and Find Full Text PDFCachexia, a systemic wasting condition, is considered a late consequence of diseases, including cancer, organ failure, or infections, and contributes to significant morbidity and mortality. The induction process and mechanistic progression of cachexia are incompletely understood. Refocusing academic efforts away from advanced cachexia to the etiology of cachexia may enable discoveries of new therapeutic approaches.
View Article and Find Full Text PDFAnimals have evolved two defense strategies to survive infections. Antagonistic strategies include mechanisms of immune resistance that operate to sense and kill invading pathogens. Cooperative or physiological defenses mediate host adaptation to the infected state, limiting physiological damage and disease, without killing the pathogen, and have been shown to cause asymptomatic carriage and transmission of lethal pathogens.
View Article and Find Full Text PDFMaintenance of energy balance is essential for overall organismal health. Mammals have evolved complex regulatory mechanisms that control energy intake and expenditure. Traditionally, studies have focused on understanding the role of macronutrient physiology in energy balance.
View Article and Find Full Text PDFDuring their co-evolution with pathogens, hosts acquired defensive health strategies that allow them to maintain their health or promote recovery when challenged with infections. The cooperative defense system is a largely unexplored branch of these evolved defense strategies. Cooperative defenses limit physiological damage and promote health without having a negative impact on a pathogen's ability to survive and replicate within the host.
View Article and Find Full Text PDFMaternal behavior is necessary for optimal development and growth of offspring. The intestinal microbiota has emerged as a critical regulator of growth and development in the early postnatal period life. Here, we describe the identification of an intestinal strain that is pathogenic to the maternal-offspring system during the early postnatal stage of life and results in growth stunting of the offspring.
View Article and Find Full Text PDFFor infectious-disease outbreaks, clinical solutions typically focus on efficient pathogen destruction. However, the COVID-19 pandemic provides a reminder that infectious diseases are complex, multisystem conditions, and a holistic understanding will be necessary to maximize survival. For COVID-19 and all other infectious diseases, metabolic processes are intimately connected to the mechanisms of disease pathogenesis and the resulting pathology and pathophysiology, as well as the host defence response to the infection.
View Article and Find Full Text PDFThe ability to maintain health, or recover to a healthy state after disease, is an active process involving distinct adaptation mechanisms coordinating interactions between all physiological systems of an organism. Studies over the past several decades have assumed the mechanisms of health and disease are essentially inter-changeable, focusing on the elucidation of the mechanisms of disease pathogenesis to enhance health, treat disease, and increase healthspan. Here, I propose that the evolved mechanisms of health are distinct from disease pathogenesis mechanisms and suggest that we develop an understanding of the biology of physiological health.
View Article and Find Full Text PDFMetabolic processes occurring during host-microbiota-pathogen interactions can favorably or negatively influence host survival during infection. Defining the metabolic needs of the three players, the mechanisms through which they acquire nutrients, and whether each participant cooperates or competes with each other to meet their own metabolic demands during infection has the potential to reveal new approaches to treat disease. Here, we review topical findings in organismal metabolism and infection and highlight four emerging lines of investigation: how host-microbiota metabolic partnerships protect against infection; competition for glucose between host and pathogen; significance of infection-induced anorexia; and redefinition of the role of iron during infection.
View Article and Find Full Text PDFPathogen virulence exists on a continuum. The strategies that drive symptomatic or asymptomatic infections remain largely unknown. We took advantage of the concept of lethal dose 50 (LD50) to ask which component of individual non-genetic variation between hosts defines whether they survive or succumb to infection.
View Article and Find Full Text PDFIt is assumed that collateral damage from the immune system drives intestinal epithelial cell (IEC) expulsion during enteric infections. In this issue of Immunity, Zhai et al. (2018) describe how Drosophila's canonical immune deficiency (Imd) pathway programs IEC delamination in the gut.
View Article and Find Full Text PDF