Publications by authors named "Janel K Warmka"

Article Synopsis
  • Protein prenylation helps proteins attach to cell membranes and interact with other proteins, and it's been a key focus for research, especially related to the oncogenic protein Ras as a potential therapy target.
  • Recent studies suggest a link between protein prenylation and neurodegenerative diseases like Alzheimer's and Parkinson's.
  • The researchers developed a method to image and quantify prenylated proteins in mammalian cells, revealing significant differences between cell types and suggesting that changes in prenylation may be related to impaired cellular processes like autophagy.
View Article and Find Full Text PDF

The potent tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) alters many cellular processes through activation of its receptor protein kinase C (PKC), including gene expression, cell cycle, and the regulation of cell morphology, raising an important question for developing targeted methods to prevent cancer: which effects of TPA are crucial for carcinogenesis? To address this question, we studied TPA action in the 3-dimensional (3D) MCF10A human breast epithelial cell system, which models important features of in vivo epithelial tissue including growth constraints, structural organization of cells, and establishment of a basement membrane. MCF10A cells, which are immortalized but nontumorigenic, form hollow, spheroid structures in 3D culture referred to as acini. The development of normal acini requires the tight spatiotemporal regulation of cellular proliferation, polarization, apoptosis, and growth arrest.

View Article and Find Full Text PDF

α-Hydroxynitrosamine metabolites of nitrosamines decompose to a reactive diazohydroxide and an aldehyde. To test the hypothesis that the aldehydes contribute to the harmful effects of nitrosamines, the toxic and mutagenic activities of three model methylating agents were compared in Chinese hamster ovary cells expressing or not expressing human O⁶-alkylguanine DNA alkyltransferase (AGT). N-Nitrosomethylurethane (NMUr), acetoxymethylmethylnitrosamine (AMMN), and 4-(methylnitrosamino)-4-acetoxy-1-(3-pyridyl)-1-butanone (NNK-4-OAc) are all activated by ester hydrolysis to methanediazohydroxide.

View Article and Find Full Text PDF

We are interested in investigating the biological activity of chalcones, a major class of compounds found in the beverage kava, in order to develop potent and selective chemopreventive candidates. Consumption of kava in the South Pacific Islands is inversely correlated with cancer incidence, even among smokers. Accordingly, chalcones have anti-cancer activities in animal and cell culture models.

View Article and Find Full Text PDF

The creation of caged molecules involves the attachment of protecting groups to biologically active compounds such as ligands, substrates and drugs that can be removed under specific conditions. Photoremovable caging groups are the most common due to their ability to be removed with high spatial and temporal resolution. Here, the synthesis and photochemistry of a caged inhibitor of protein farnesyltransferase is described.

View Article and Find Full Text PDF

We have capitalized on the unique properties of the skin tumor promoter palytoxin, which does not activate protein kinase C, to investigate alternative mechanisms by which major signaling molecules can be modulated during carcinogenesis. We report here that palytoxin activates extracellular signal-regulated kinase (ERK) through a novel mechanism that involves inactivation of an ERK phosphatase in keratinocytes derived from initiated mouse skin (308 cells). Use of U0126 revealed that palytoxin requires the ERK kinase MEK to stimulate ERK activity, although palytoxin did not activate MEK.

View Article and Find Full Text PDF

In mouse epidermis in vivo, the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) increases gene expression of matrix metalloproteinase-13 (MMP-13), an enzyme implicated in carcinogenesis. Here we used a keratinocyte cell line (308) derived from initiated mouse skin to investigate TPA-induced MMP-13 gene expression. Use of a pharmacological inhibitor (U0126) demonstrated that extracellular signal regulated kinase (ERK) plays a major role in TPA-induced MMP-13 gene expression.

View Article and Find Full Text PDF

We have been investigating how the novel skin tumor promoter palytoxin transmits signals through mitogen activated protein kinases (MAPKs). Palytoxin activates three major MAPKs, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38, in a keratinocyte cell line derived from initiated mouse skin (308). We previously showed that palytoxin requires ERK to increase matrix metalloproteinase-13 (MMP-13) gene expression, an enzyme implicated in carcinogenesis.

View Article and Find Full Text PDF

We have been probing the molecular mechanisms of tumor promoters that stimulate distinct initial signals to define critical downstream biochemical events in carcinogenesis. The action of the novel skin tumor promoter palytoxin on signaling and gene expression in keratinocytes, the primary target cells of tumor promoters, was therefore investigated. Palytoxin stimulated an increase in mRNA for matrix metalloproteinase-13 (MMP-13), an enzyme implicated in carcinogenesis, in a keratinocyte cell line derived from initiated mouse skin (308).

View Article and Find Full Text PDF