Publications by authors named "Janek Szychowski"

PKMYT1 is a regulator of CDK1 phosphorylation and is a compelling therapeutic target for the treatment of certain types of DNA damage response cancers due to its established synthetic lethal relationship with amplification. To date, no selective inhibitors have been reported for this kinase that would allow for investigation of the pharmacological role of PKMYT1. To address this need compound was identified as a weak PKMYT1 inhibitor.

View Article and Find Full Text PDF

Amplification of the CCNE1 locus on chromosome 19q12 is prevalent in multiple tumour types, particularly in high-grade serous ovarian cancer, uterine tumours and gastro-oesophageal cancers, where high cyclin E levels are associated with genome instability, whole-genome doubling and resistance to cytotoxic and targeted therapies. To uncover therapeutic targets for tumours with CCNE1 amplification, we undertook genome-scale CRISPR-Cas9-based synthetic lethality screens in cellular models of CCNE1 amplification. Here we report that increasing CCNE1 dosage engenders a vulnerability to the inhibition of the PKMYT1 kinase, a negative regulator of CDK1.

View Article and Find Full Text PDF

This review brings to the forefront key synthetic modifications on natural products (NPs) that have yielded successful drugs. The emphasis is placed on the power of targeted chemical transformations in enhancing the therapeutic value of NPs through optimization of pharmacokinetics, stability, potency, and/or selectivity. Multiple classes of NPs such as macrolides, opioids, steroids, and β-lactams used to treat a variety of conditions such as cancers, infections, inflammation are exemplified.

View Article and Find Full Text PDF

Pathogenic microbes have evolved complex secretion systems to deliver virulence factors into host cells. Identification of these factors is critical for understanding the infection process. We report a powerful and versatile approach to the selective labeling and identification of secreted pathogen proteins.

View Article and Find Full Text PDF

The azide-alkyne cycloaddition provides a powerful tool for bio-orthogonal labeling of proteins, nucleic acids, glycans, and lipids. In some labeling experiments, e.g.

View Article and Find Full Text PDF

Incorporation of an hydrophobic (phenethylamino)ethyl ether at C2″ of N1-(HABA)-3',4'-dideoxyparomomycin led to a novel analog with an excellent antibacterial profile against a host of resistant bacteria.

View Article and Find Full Text PDF

A synthesis of verdamicin C2 and its congener C2a has been accomplished from sisomicin relying on a novel oxidative transformation of an allylic azide to the corresponding alpha,beta-unsaturated aldehyde, and its stereocontrolled elaboration into the intended 5' side chain of verdamicin C2 and C2a. In vitro antibacterial testing shows that both C6' epimers in verdamicin C2 and C2a are equally active against a variety of bacterial strains. Oxidation of allylic primary azides, ethers, and esters of 2-substituted dihydro[2H]pyrans with SeO(2) leads directly to the corresponding aldehydes.

View Article and Find Full Text PDF

The crystal structure of the complex between oligonucleotide containing the bacterial ribosomal decoding site (A site) and the synthetic paromomycin analogue 1, which contains the gamma-amino-alpha-hydroxybutyryl (L-haba) group at position N1 of ring II (2-DOS ring), and an ether chain with an O-phenethylaminoethyl group at position C2'' of ring III, is reported. Interestingly, next to the paromomycin analogue 1 specifically bound to the A site, a second molecule of 1 with a different conformation is observed at the crystal packing interface which mimics the A-minor interaction between two bulged-out adenines from the A site and the codon-anticodon stem of the mRNA-tRNA complex. Improved antibacterial activity supports the conclusion that analogue 1 might affect protein synthesis on the ribosome in two different ways: 1) specific binding to the A site forces maintenance of the "on" state with two bulged out adenines, and 2) a new binding mode of 1 to an A-minor motif which stabilizes complex formation between the ribosome and the mRNA-tRNA complex regardless of whether the codon-anticodon stem is of the cognate or near-cognate type.

View Article and Find Full Text PDF

A series of 2"-O-substituted ether analogues of paromomycin were prepared based on new site-selective functionalizations. X-ray cocrystal complexes of several such analogues revealed a new mode of binding in the A-site rRNA, whereby rings I and II adopted the familiar orientation and position previously observed with paromomycin, but rings III and IV were oriented differently. With few exceptions, all of the new analogues showed potent inhibitory activity equal or better than paromomycin against a sensitive strain of S.

View Article and Find Full Text PDF

Based on molecular modeling and available X-ray structure data on aminoglycosides complexed with a bacterial ribosomal surrogate or with a kinase, two analogues of paromomycin were prepared by tethering the 6-OH and the 6'''-NH(2) group with a five-carbon bridge. Only one of two possible hydroxyl groups was phosphorylated by the kinase. The application of ring closure metathesis is presented for the first time to construct bridged macrocyclic analogues in the aminoglycoside series.

View Article and Find Full Text PDF