Publications by authors named "Janeck Scott-Fordsmand"

Nanopesticides (Npes) offer improved efficacy compared to their conventional forms while reducing the usage/application rates, hence being more sustainable options. However, there is still a knowledge gap on the Npes environmental impacts. To support the safety of nano-enabled pesticides, the present study aimed at assessing the toxicity of the commercial Npe NUCOP-M and the active substance copper oxychloride, using the ecotoxicological soil model Enchytraeus crypticus and LUFA 2.

View Article and Find Full Text PDF

Iron oxide nanomaterials (FeO NMs) have important biomedical and environmental applications, e.g. drug delivery, chemotherapy, magnetic resonance imaging contrast agents, etc.

View Article and Find Full Text PDF

A continuous challenge in nanotoxicology is the interaction of nanoparticles with the soil components. In the present study, we compare the toxicity of silver nanoparticles (AgNM300K) on earthworms across 4 different soils, exploring which among the total-, soil solution-, or worm tissue-Ag-concentrations that enables the best prediction of toxicity across the soils. We exposed the earthworm Eisenia fetida to AgNM300K for 56 days to assess survival, reproduction, and bioaccumulation.

View Article and Find Full Text PDF

The wide variation of nanomaterial (NM) characters (size, shape, and properties) and the related impacts on living organisms make it virtually impossible to assess their safety; the need for modeling has been urged for long. We here investigate the custom-designed 1-10% Fe-doped CuO NM library. Effects were assessed using the soil ecotoxicology model (Oligochaeta) in the standard 21 days plus its extension (49 days).

View Article and Find Full Text PDF

The past few decades of managing the uncertain risks associated with nanomaterials have provided valuable insights (knowledge gaps, tools, methods, etc.) that are equally important to promote safe and sustainable development and use of advanced materials. Based on these insights, the current paper proposes several actions to optimize the risk and sustainability governance of advanced materials.

View Article and Find Full Text PDF

Nanobiomaterials (NBMs) have tremendous potential applications including in cancer diagnosis and treatment. However, the health and environmental effects of NBMs must be thoroughly assessed to ensure safety. FeO (magnetite) nanoparticles coated with polyethylene glycol (PEG) and poly (lactic-co-glycolic acid) (PLGA) were one of the focus NBMs within the EU project BIORIMA.

View Article and Find Full Text PDF

Safe-and-sustainable-by-design (SSbD) nanomaterials (NMs) or NM-containing products are a priority. Silver (Ag) NMs have a vast array of applications, including biomedical and other products, even as nanopesticides. Thus, their release to the environment is expected to increase.

View Article and Find Full Text PDF

Because of its properties, silver is among the most used metals both as salt and as nanomaterials (NMs), hence reaching the environment. Multigenerational (MG) exposure testing is scarce, and especially so for NMs and soil invertebrates. In this study the MG effects of Ag NMs (Ag NM300K) and Ag salt (AgNO) were assessed, using in LUFA 2.

View Article and Find Full Text PDF

Lipid-based nanoparticles (LNPs) are advanced materials (AdMa), particularly relevant for drug delivery of poorly water-soluble compounds, while also providing protection, stabilization, and controlled release of the drugs/active substances. The toxicological data available often focus on the specific applications of the LNPs-drug tested, with indication of low toxicity. However, the ecotoxicological effects of LNPs are currently unknown.

View Article and Find Full Text PDF

Nanoagrochemicals have the potential to revolutionize agriculture towards a precision farming system, able to reduce application rates and consequently their environmental footprint, while keeping efficacy. Several nanoagrochemicals (including nanopesticides (Npes) and nanofertilizers (Nfer)) are already commercialized but the environmental risk assessment of these advanced materials is often lacking. In the present study, we studied the commercial fertilizer WELGRO® Cu + Zn and assessed its ecotoxicity to the soil invertebrate species Enchytraeus crypticus (Oligochaeta), further comparing it to its individual active substances CuO and ZnO.

View Article and Find Full Text PDF

The European environmental risk assessment (ERA) of plant protection products follows a tiered approach. The approach for soil invertebrates currently consists of two steps, starting with a Tier 1 assessment based on reproduction toxicity tests with earthworms, springtails, and predatory mites. In case an unacceptable risk is identified at Tier 1, field studies can be conducted as a higher-tier option.

View Article and Find Full Text PDF

Nanopesticides (Npes) carry the potential of increased efficacy while reducing application rates, hence increasing agricultural productivity in a more sustainable way. However, given its novelty, the environmental risk assessment of these advanced materials is mostly absent. In the present study we investigated the ecotoxicity of a commercial insecticide, with reported nanofeatures, Karate Zeon®, and compared it to its active substance lambda-cyhalothrin.

View Article and Find Full Text PDF

Nanoemulsions (NEs) have been extensively studied as carriers for drug delivery, since these provide a good alternative to the existing non-nano systems, while promoting their target delivery and controlled release. NEs are considered safe drug carriers from a pre-clinical perspective, but there is currently no information on their ecotoxicological effects. In the present study we investigated the toxicity of a NE material (lecithin, sunflower oil, borate buffer) designed to be used as a liposomal excipient for eye drops, further referred to as (Lipid Particle:LP) LP_Eye and its dispersant (borate buffer) (LP_Eye disp.

View Article and Find Full Text PDF

The hazards of nanomaterials/nanoparticles (NMs/NPs) are mostly assessed using individual NMs, and a more systematic approach, using many NMs, is needed to evaluate its risks in the environment. Libraries of NMs, with a range of identified different but related characters/descriptors allow the comparison of effects across many NMs. The effects of a custom designed Fe-doped TiO NMs library containing 11 NMs was assessed on the soil model Enchytraeus crypticus (Oligochaeta), both with and without UV (standard fluorescent) radiation.

View Article and Find Full Text PDF

Developments in the nanotechnology area occur ensuring compliance with regulatory requirements, not only in terms of safety requirements, but also to meet sustainability goals. Hence, safer and sustainable-by-design (SSbD) materials are also aimed for during developmental process. Similar to with any new materials their safety must be assessed.

View Article and Find Full Text PDF

Hydroxyapatite (HA) is a calcium phosphate used in many fields, including biomedical applications. In particular, ion-doped HA nanomaterials (nHA) are developed for their increased bioactivity, particularly in the fields of regenerative medicine and nanomedicine. In this study, we assessed the ecotoxicological impact of five nHA materials: a synthesized calcium hydroxyapatite (CaP-HA), superparamagnetic iron-doped hydroxyapatite (Fe-HA), titanium-doped hydroxyapatite (Ti-HA), alginate/titanium-doped hydroxyapatite hybrid composite (Ti-HA-Alg), and a commercial HA.

View Article and Find Full Text PDF

Sustainable development is a key challenge for contemporary human societies; failure to achieve sustainability could threaten human survival. In this review article, we illustrate how Machine Learning (ML) could support more sustainable development, covering the basics of data gathering through each step of the Environmental Risk Assessment (ERA). The literature provides several examples showing how ML can be employed in most steps of a typical ERA.

View Article and Find Full Text PDF

Although standard testing guidelines use a species as a representative surrogate, species-specific sensitivity is well-known. The aim of this study was to investigate the species-specific difference in avoidance behaviour among Collembola species exposed to silver (Ag) nanomaterials (NM) (Ag NM300K). The avoidance test was performed with , an international standard species in laboratory tests, and five widely distributed species with different life history traits, commonly used in small multispecies systems (, , , and ).

View Article and Find Full Text PDF

The production, use and disposal of nanoparticles (NPs) has been increasing continuously. Due to its unique properties, such as a high resistance to oxidation, gold NPs (AuNPs) are persistent in the environment, including the terrestrial, one of the major sinks of NPs. The present study aimed to assess the effects of AuNPs (from 10 to 1000 mg/kg) on two OECD standard ecotoxicological soil model species, and , based on the reproduction test (28 days) and on a longer-term exposure (56 days), and survival, reproduction, and size were assessed.

View Article and Find Full Text PDF

The current environmental hazard assessment is based on the testing of the pristine substance. However, it cannot be excluded that (nano)pharmaceuticals are excreted into sewage during the use phase followed by entry into wastewater treatment plants (WWTPs). Sorption to sewage sludge or release via effluent can result in modified ecotoxicological effects which possibly can only be detected with a modified test approach.

View Article and Find Full Text PDF

Earthworms have been used for centuries in traditional medicine and are used globally as an ecotoxicological standard test species. Studies of the earthworm have shown that exposure to nanomaterials activates a primary corona-response, which is covering the nanomaterial with native proteins, the same response as to biological invaders such as a virus. We outline that the earthworm is possibly immune to COVID-19 (Severe Acute Respiratory Syndrome Coronavirus 2, SARS-CoV-2), and we describe the likely mechanisms of highly receptor-specific pore-forming proteins (PFPs).

View Article and Find Full Text PDF

An imbalance between reactive oxygen species (ROS) and antioxidants in a living organism results in oxidative stress. Measures of such imbalance can be used as a biomarker of stress in ecotoxicology. In this study, we implemented the ROS detection method based on the oxidant-sensing probe dichloro-dihydro-fluorescein diacetate (DCFH-DA), detected by fluorescence microscopy, in adults and cocoons, i.

View Article and Find Full Text PDF

Assessing the risks of nanomaterials/nanoparticles (NMs/NPs) under various environmental conditions requires a more systematic approach, including the comparison of effects across many NMs with identified different but related characters/descriptors. Hence, there is an urgent need to provide coherent (eco)toxicological datasets containing comprehensive toxicity information relating to a diverse spectra of NPs characters. These datasets are test benches for developing holistic methodologies with broader applicability.

View Article and Find Full Text PDF

Enchytraeids (Annelida) are soil invertebrates with worldwide distribution that have served as ecotoxicology models for over 20 years. We present the first high-quality reference genome of Enchytraeus crypticus, assembled from a combination of Pacific Bioscience single-molecule real-time and Illumina sequencing platforms as a 525.2 Mbp genome (910 gapless scaffolds and 18,452 genes).

View Article and Find Full Text PDF