Publications by authors named "Jane Yagi"

Polaromonas naphthalenivorans strain CJ2 is a Gram-negative betaproteobacterium that was identified, using stable isotope probing in 2003, as a dominant in situ degrader of naphthalene in coal tar-contaminated sediments. The sequenced genome of strain CJ2 revealed several genes conferring nitrogen fixation within a 65.6 kb region of strain CJ2's chromosome that is absent in the genome of its closest sequenced relative Polaromonas sp.

View Article and Find Full Text PDF
Article Synopsis
  • - Microbial processes play a vital role in maintaining ecosystems, but studying these processes in complex field sites is difficult.
  • - Research at a contaminated site showed how aromatic hydrocarbon biodegradation is connected to nitrogen cycling, with fluctuating concentrations of chemicals like nitrate and ammonia monitored over 10 months.
  • - Experiments revealed that aerobic conditions favored naphthalene breakdown, while specific genes indicated that both anaerobic metabolism of aromatic compounds and nitrogen transformations (like DNRA and nitrification) occurred, linking nitrogen cycling to the degradation of pollutants.
View Article and Find Full Text PDF

The propensity for groundwater ecosystems to recover from contamination by organic chemicals (in this case, coal-tar waste) is of vital concern for scientists and engineers who manage polluted sites. The microbially mediated cleanup processes are also of interest to ecologists because they are an important mechanism for the resilience of ecosystems. In this study we establish the long-term dynamic nature of a coal-tar waste-contaminated site and its microbial community.

View Article and Find Full Text PDF

The diversity of Rieske dioxygenase genes and short-term temporal variability in the abundance of two selected dioxygenase gene sequences were examined in a naphthalene-rich, coal tar waste-contaminated subsurface study site. Using a previously published PCR-based approach (S. M.

View Article and Find Full Text PDF

We analysed the genome of the aromatic hydrocarbon-degrading, facultatively chemolithotrophic betaproteobacterium, Polaromonas naphthalenivorans strain CJ2. Recent work has increasingly shown that Polaromonas species are prevalent in a variety of pristine oligotrophic environments, as well as polluted habitats. Besides a circular chromosome of 4.

View Article and Find Full Text PDF

Since deep-sea hydrothermal vent fluids are enriched with toxic metals, it was hypothesized that (i) the biota in the vicinity of a vent is adapted to life in the presence of toxic metals and (ii) metal toxicity is modulated by the steep physical-chemical gradients that occur when anoxic, hot fluids are mixed with cold oxygenated seawater. We collected bacterial biomass at different distances from a diffuse flow vent at 9 degrees N on the East Pacific Rise and tested these hypotheses by examining the effect of mercuric mercury [Hg(II)] on vent bacteria. Four of six moderate thermophiles, most of which were vent isolates belonging to the genus Alcanivorax, and six of eight mesophiles from the vent plume were resistant to >10 microM Hg(II) and reduced it to elemental mercury [Hg(0)].

View Article and Find Full Text PDF

The curious phenomenon of similar levels of methylmercury (MeHg) accumulation in fish from contaminated and pristine environments may be explained by the observation that the proportion of total mercury (HgT) present as MeHg is inversely related to HgT in natural waters. We hypothesize that this "MeHg accumulation paradox" is explained by the quantitative induction of bacterial enzymes that are encoded by the mercury resistance (mer) operon, organomercury lyase (MerB), and mercuric reductase (MerA) by inorganic Hg (Hg[II]). We tested this hypothesis in two ecosystems in New Jersey: Berry's Creek in the Meadowlands (ML) and Pine Barren (PB) lakes.

View Article and Find Full Text PDF