Publications by authors named "Jane Y Edwards"

Objective: Nobiletin is a dietary flavonoid that improves insulin resistance and atherosclerosis in mice with metabolic dysfunction. Dysregulation of intestinal lipoprotein metabolism contributes to atherogenesis. The objective of the study was to determine if nobiletin targets the intestine to improve metabolic dysregulation in both male and female mice.

View Article and Find Full Text PDF

Background And Aims: Naringenin is a citrus-derived flavonoid with lipid-lowering and insulin-sensitizing effects leading to athero-protection in Ldlr mice fed a high-fat diet. However, the ability of naringenin to promote atherosclerosis regression is unknown. In the present study, we assessed the capacity of naringenin to enhance regression in Ldlr mice with diet-induced intermediate atherosclerosis intervened with a chow diet.

View Article and Find Full Text PDF

Scope: Naringenin is a citrus-derived flavonoid that has potent lipid-lowering and insulin-sensitizing effects in obese mouse models of metabolic dysfunction. However, in these models, a significant effect of naringenin supplementation is the prevention of weight gain, which in itself can confer metabolic protection. Therefore, in the present study, the effect of naringenin supplementation in lean, chow-fed Ldlr mice is investigated.

View Article and Find Full Text PDF

Obesity and its associated metabolic dysfunction and cardiovascular disease risk represent a leading cause of adult morbidity worldwide. Currently available pharmacological therapies for obesity have had limited success in reversing existing obesity and metabolic dysregulation. Previous prevention studies demonstrated that the citrus flavonoids, naringenin and nobiletin, protect against obesity and metabolic dysfunction in mice fed a high-fat cholesterol-containing (HFHC) diet.

View Article and Find Full Text PDF

Objective: Bempedoic acid (BemA; ETC-1002) is a novel drug that targets hepatic ATP-citrate lyase to reduce cholesterol biosynthesis. In phase 2 studies, BemA lowers elevated low-density lipoprotein cholesterol (LDL-C) in hypercholesterolemic patients. In the present study, we tested the ability of BemA to decrease plasma cholesterol and LDL-C and attenuate atherosclerosis in a large animal model of familial hypercholesterolemia.

View Article and Find Full Text PDF

Objective: Bempedoic acid (ETC-1002, 8-hydroxy-2,2,14,14-tetramethylpentadecanedioic acid) is a novel low-density lipoprotein cholesterol-lowering compound. In animals, bempedoic acid targets the liver where it inhibits cholesterol and fatty acid synthesis through inhibition of ATP-citrate lyase and through activation of AMP-activated protein kinase. In this study, we tested the hypothesis that bempedoic acid would prevent diet-induced metabolic dysregulation, inflammation, and atherosclerosis.

View Article and Find Full Text PDF

PPARδ regulates systemic lipid homeostasis and inflammation, but its role in hepatic lipid metabolism remains unclear. Here, we examine whether intervening with a selective PPARδ agonist corrects hepatic steatosis induced by a high-fat, cholesterol-containing (HFHC) diet. Ldlr(-/-) mice were fed a chow or HFHC diet (42% fat, 0.

View Article and Find Full Text PDF

Objective: The peroxisome proliferator-activated receptor (PPAR) δ regulates systemic lipid homeostasis and inflammation. However, the ability of PPARδ agonists to improve the pathology of pre-established lesions and whether PPARδ activation is atheroprotective in the setting of insulin resistance have not been reported. Here, we examine whether intervention with a selective PPARδ agonist corrects metabolic dysregulation and attenuates aortic inflammation and atherosclerosis.

View Article and Find Full Text PDF

Obesity-associated chronic inflammation contributes to metabolic dysfunction and propagates atherosclerosis. Recent evidence suggests that increased dietary cholesterol exacerbates inflammation in adipose tissue and liver, contributing to the proatherogenic milieu. The ability of the citrus flavonoid naringenin to prevent these cholesterol-induced perturbations is unknown.

View Article and Find Full Text PDF

Background: Foam cell formation by intimal smooth muscle cells (SMCs) inhibits the elaboration of extracellular matrix, which is detrimental to plaque stabilization. In the present study, we examined the lipoproteins and receptors involved in human SMC foam cell formation and investigated the ability of 24(S),25-epoxycholesterol [24(S),25-EC], an oxysterol agonist of the liver X receptor, to attenuate SMC foam cell formation.

Methods And Results: Incubation of human internal thoracic SMCs with atherogenic lipoproteins demonstrated that low-density lipoprotein (LDL), but not oxidized or acetylated LDL, was the primary lipoprotein taken up, resulting in marked cholesteryl ester deposition (6-fold vs 1.

View Article and Find Full Text PDF

Objective: Hypertriglyceridemia is an important risk factor for cardiovascular disease. Elevated plasma very low-density lipoprotein (VLDL) puts insulin-resistant patients at risk for atherosclerosis. VLDL readily induces macrophage lipid accumulation and inflammatory responses, for which targeted therapeutic strategies remain elusive.

View Article and Find Full Text PDF

Objective: Increased plasma concentrations of apolipoprotein B100 often present in patients with insulin resistance and confer increased risk for the development of atherosclerosis. Naturally occurring polyphenolic compounds including flavonoids have antiatherogenic properties. The aim of the current study was to evaluate the effect of the polymethoxylated flavonoid nobiletin on lipoprotein secretion in cultured human hepatoma cells (HepG2) and in a mouse model of insulin resistance and atherosclerosis.

View Article and Find Full Text PDF

Objective: The global epidemic of metabolic syndrome and its complications demands rapid evaluation of new and accessible interventions. Insulin resistance is the central biochemical disturbance in the metabolic syndrome. The citrus-derived flavonoid, naringenin, has lipid-lowering properties and inhibits VLDL secretion from cultured hepatocytes in a manner resembling insulin.

View Article and Find Full Text PDF

Hepatic overproduction of apolipoprotein B (apoB)-containing lipoproteins is characteristic of the dyslipidemia associated with insulin resistance. Recently, we demonstrated that the flavonoid naringenin, like insulin, decreased apoB secretion from HepG2 cells by activation of both the phosphoinositide-3-kinase (PI3-K) pathway and the mitogen-activated protein kinase/extracellular-regulated kinase (MAPK(erk)) pathway. In the present study, we determined whether naringenin-induced signaling required the insulin receptor (IR) and sensitized the cell to the effects of insulin, and whether the kinetics of apoB assembly and secretion in cells exposed to naringenin were similar to those of insulin.

View Article and Find Full Text PDF

Liver X receptor (LXR) activation represents a mechanism to prevent macrophage foam cell formation. Previously, we demonstrated that partial inhibition of oxidosqualene:lanosterol cyclase (OSC) stimulated synthesis of the LXR agonist 24(S),25-epoxycholesterol (24(S),25-epoxy) and enhanced ABCA1-mediated cholesterol efflux. In contrast to a synthetic, nonsteroidal LXR activator, TO-901317, triglyceride accumulation was not observed.

View Article and Find Full Text PDF

The combination of ezetimibe, an inhibitor of Niemann-Pick C1-like 1 protein (NPC1L1), and an HMG-CoA reductase inhibitor decreases cholesterol absorption and synthesis. In clinical trials, ezetimibe plus simvastatin produces greater LDL-cholesterol reductions than does monotherapy. The molecular mechanism for this enhanced efficacy has not been defined.

View Article and Find Full Text PDF

Hutchinson-Gilford progeria syndrome (HGPS; MIM 176670) is a rare disease characterized by accelerated aging. In this study, light and immunofluorescence microscopy were used to assess morphological changes, measures of cell growth kinetics and gene expression profiles in HGPS cells and normal fibroblasts in culture. A filtering strategy was developed based on differentially expressed transcripts seen consistently across three culture stages based on cell passage number.

View Article and Find Full Text PDF

Objective: Inhibition of 2,3-oxidosqualene:lanosterol cyclase (OSC), an enzyme in the cholesterol synthesis pathway, has the unique ability to inhibit cholesterol synthesis while simultaneously enhancing oxysterol synthesis. Our objectives were to determine, in vivo, if a novel OSC inhibitor reduced low-density lipoprotein (LDL) cholesterol and to define the mechanism(s) involved.

Methods And Results: Miniature pigs received the OSC inhibitor RO0717625 or placebo and a diet containing fat (34% of energy) and 400 mg per day of cholesterol.

View Article and Find Full Text PDF

Microsomal triglyceride transfer protein (MTP) is necessary for hepatocyte assembly and secretion of apolipoprotein (apo)B100-containing lipoproteins. The citrus flavonoid naringenin, like insulin, decreased MTP expression in HepG2 cells, resulting in inhibition of apoB100 secretion; however, the mechanism for naringenin is independent of insulin receptor substrate-1/2. Recently, it was reported that insulin decreased MTP expression in HepG2 cells via the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) (MAPK(erk)) pathway.

View Article and Find Full Text PDF

The cholesterol biosynthetic pathway produces numerous signaling molecules. Oxysterols through liver X receptor (LXR) activation regulate cholesterol efflux, whereas the non-sterol mevalonate metabolite, geranylgeranyl pyrophosphate (GGPP), was recently demonstrated to inhibit ABCA1 expression directly, through antagonism of LXR and indirectly through enhanced RhoA geranylgeranylation. We used HMG-CoA reductase inhibitors (statins) to test the hypothesis that reduced synthesis of mevalonate metabolites would enhance cholesterol efflux and attenuate foam cell formation.

View Article and Find Full Text PDF

Oxysterols are key regulators of lipid metabolism and regulate gene expression by activating the liver X receptor (LXR). LXR plays a vital role in macrophage foam cell formation, a central event in atherosclerosis. It is known that addition of exogenous oxysterols to cultured macrophages activates LXR, leading to increased expression of ABCA1 and cholesterol efflux.

View Article and Find Full Text PDF

Discovery of the ileal apical sodium-dependent bile acid transporter (ASBT) permitted development of specific inhibitors of bile acid reabsorption, potentially a new class of cholesterol-lowering agents. In the present study, we tested the hypothesis that combining the novel ASBT inhibitor, SC-435, with the HMG-CoA reductase inhibitor, atorvastatin, would potentiate reductions in LDL cholesterol (LDL-C) and LDL apolipoprotein B (apoB). ApoB kinetic studies were performed in miniature pigs fed a typical human diet and treated with the combination of SC-435 (5 mg/kg/day) plus atorvastatin (3 mg/kg/day) (SC-435+A) or a placebo.

View Article and Find Full Text PDF

Objective: Cloning of the ileal apical sodium-dependent bile acid transporter (ASBT) has identified a new pharmacological target for the modulation of plasma lipoproteins. The objective of this study was to determine whether a novel, specific, minimally absorbed ASBT inhibitor (SC-435) decreases LDL cholesterol through the alteration of plasma apoB kinetics.

Methods And Results: Miniature pigs were treated for 21 days with 10 mg/kg/day of SC-435 or placebo.

View Article and Find Full Text PDF

Diets containing the soya-derived phytoestrogens, genistein and daidzein, decrease plasma cholesterol in humans and experimental animals. The mechanisms responsible for the hypocholesterolaemic effects of these isoflavones are unknown. The present study was conducted to determine if genistein and daidzein regulate hepatocyte cholesterol metabolism and apolipoprotein (apo) B secretion in cultured human hepatoma (HepG2) cells.

View Article and Find Full Text PDF