Claudin-18 splice variant 2 (CLDN18.2), a tight junction protein, is a highly cell type-specific antigen that is expressed by differentiated gastric mucosa cells. The expression of CLDN18.
View Article and Find Full Text PDFThe development of targeted cancer therapies based on monoclonal antibodies against tumor-associated antigens has progressed markedly over recent decades. This approach is dependent on the identification of tumor-specific, normal tissue-sparing antigenic targets. The transmembrane protein claudin-18 splice variant 2 (CLDN18.
View Article and Find Full Text PDFProper regulation of epigenetic states of chromatin is crucial to achieve tissue-specific gene expression during embryogenesis. The lung-specific gene products, surfactant proteins B (SP-B) and C (SP-C), are synthesized in alveolar epithelial cells and prevent alveolar collapse. Epigenetic regulation of these surfactant proteins, however, remains unknown.
View Article and Find Full Text PDFThe ERK pathway not only upregulates growth-promoting genes, but also downregulates anti-proliferative and tumor-suppressive genes. In particular, ERK signaling contributes to repression of the E-cadherin gene during epithelial-mesenchymal transition (EMT). The CtBP transcriptional co-repressor is also involved in gene silencing of E-cadherin.
View Article and Find Full Text PDFHypoxia-inducible factor 1 (HIF-1) plays a key role in the cellular adaptation to hypoxia. Although HIF-1 is usually strongly suppressed by posttranslational mechanisms during normoxia, HIF-1 is active and enhances tumorigenicity in malignant tumor cells that express the membrane protease MT1-MMP. The cytoplasmic tail of MT1-MMP, which can bind a HIF-1 suppressor protein called factor inhibiting HIF-1 (FIH-1), promotes inhibition of FIH-1 by Mint3 during normoxia.
View Article and Find Full Text PDFOxygen is a vital requirement for multi-cellular organisms to generate energy and cells have developed multiple compensatory mechanisms to adapt to stressful hypoxic conditions. Such adaptive mechanisms are intricately interconnected with other signaling pathways that regulate cellular functions such as cell growth. However, our understanding of the overall system governing the cellular response to the availability of oxygen remains limited.
View Article and Find Full Text PDF