Monitoring programs are fundamental to understanding the state and trend of aquatic ecosystems. Sampling designs are a crucial component of monitoring programs and ensure that measurements evaluate progress toward clearly stated management objectives, which provides a mechanism for adaptive management. Here, we use a well-established marine monitoring program for inshore water quality in the Great Barrier Reef (GBR), Australia to investigate whether a sampling re-design has increased the program's capacity to meet its primary objectives.
View Article and Find Full Text PDFMany coastal and marine ecosystems around the world are under increasing threat from a range of anthropogenic influences. The management of these threats continues to present ongoing challenges, with many ecosystems increasingly requiring active restoration to support or re-establish the ecosystem's biological, cultural, social and economic values. The current condition of Australia's Great Barrier Reef (GBR) and its threats, including water quality, climate change and the loss of wetlands, causing the continuing decline in the GBR's ecological condition and function, has received global attention.
View Article and Find Full Text PDFEutrophication of coastal and nearshore receiving environments downstream of intensive agricultural production areas is a global issue. The Reef 2050 Water Quality Improvement Plan (2017-2022) sets ambitious targets for reducing pollutant loads entering the Great Barrier Reef from contributing agricultural catchments. At a regional scale, the Wet Tropics end-of-catchment target load reduction for dissolved inorganic nitrogen (DIN) is 60% from the 2012-2013 anthropogenic load level.
View Article and Find Full Text PDFAn operational method to assess trends in marine water composition and ecosystem health during flood periods has been developed for the Great Barrier Reef (GBR), Queensland, Australia. This method integrates satellite water colour data with field water quality and ecosystem monitoring data and involves the classification of Moderate-Resolution Imaging Spectroradiometer (MODIS satellite) pixels into six distinct water bodies using a "wet season" colour scale developed specifically for the GBR. Using this information, several monitoring and reporting products have been derived and are operationally implemented into a long-term water quality monitoring program for the GBR.
View Article and Find Full Text PDFOptically active water quality components (OAC) transported by flood plumes to nearshore marine environments affect light levels. The definition of minimum OAC concentrations that must be maintained to sustain sufficient light levels for conservation of light-dependant coastal ecosystems exposed to flood waters is necessary to guide management actions in adjacent catchments. In this study, a framework for defining OAC target concentrations using empirical light attenuation models is proposed and applied to the Wet Tropics region of the Great Barrier Reef (GBR) (Queensland, Australia).
View Article and Find Full Text PDFRun-off containing increased concentrations of sediment, nutrients, and pesticides from land-based anthropogenic activities is a significant influence on water quality and the ecologic conditions of nearshore areas of the Great Barrier Reef World Heritage Area, Australia. The potential and actual impacts of increased pollutant concentrations range from bioaccumulation of contaminants and decreased photosynthetic capacity to major shifts in community structure and health of mangrove, coral reef, and seagrass ecosystems. A detailed conceptual model underpins and illustrates the links between the main anthropogenic pressures or threats (dry-land cattle grazing and intensive sugar cane cropping) and the production of key contaminants or stressors of Great Barrier Reef water quality.
View Article and Find Full Text PDF