Background: Overexpression of epidermal growth factor receptor (EGFR), and downstream pathway activation appears to be a common oncogenic driver in the majority of head and neck squamous cell cancers (HNSCCs); yet targeting EGFR for the treatment of HNSCC has met with limited success. Apart from the anti-EGFR antibody cetuximab, no small molecule EGFR/tyrosine kinase inhibitors (TKIs) have progressed to routine clinical use. The aim of this study was to determine factors contributing to the lack of response to TKIs and identify alternative therapeutic vulnerabilities.
View Article and Find Full Text PDFGain of function (GOF) DNA binding domain (DBD) mutations of TP53 upregulate chromatin regulatory genes that promote genome-wide histone methylation and acetylation. Here, we therapeutically exploit the oncogenic GOF mechanisms of p53 codon 158 (Arg) mutation, a DBD mutant found to be prevalent in lung carcinomas. Using high throughput compound screening and combination analyses, we uncover that acetylating mutp53 could render cancers susceptible to cisplatin-induced DNA stress.
View Article and Find Full Text PDFMurine double minute 4 protein (MDMX) is crucial for the regulation of the tumor suppressor protein p53. Phosphorylation of the N-terminal domain of MDMX is thought to affect its binding with the transactivation domain of p53, thus playing a role in p53 regulation. In this study, the effects of MDMX phosphorylation on the binding of p53 were investigated using molecular dynamics simulations.
View Article and Find Full Text PDF