Ecosystems are subjected to increasing exposure to multiple anthropogenic drivers. This has led to the development of national and international accounting systems describing the condition of ecosystems, often based on few, highly aggregated indicators. Such accounting systems would benefit from a stronger theoretical and empirical underpinning of ecosystem dynamics.
View Article and Find Full Text PDFAssessing and predicting the persistence of populations is essential for the conservation and control of species. Here, we argue that local mechanisms require a better conceptual synthesis to facilitate a more holistic consideration along with regional mechanisms known from metapopulation theory. We summarise the evidence for local buffer mechanisms along with their capacities and emphasise the need to include multiple buffer mechanisms in studies of population persistence.
View Article and Find Full Text PDFClimate change is expected to shift the boreal biome northward through expansion at the northern and contraction at the southern boundary respectively. However, biome-scale evidence of such a shift is rare. Here, we used remotely-sensed tree cover data to quantify temporal changes across the North American boreal biome from 2000 to 2019.
View Article and Find Full Text PDFWe highlight recent developments and avenues for advancement, which can improve insight into the causes of changes in the spatiotemporal dynamics of forest Geometridea moth species (hereafter 'geometrids'). Some forest geometrids possess fundamental biological traits, which make them particularly liable to outbreak range expansions and host shifts mitigated by climate change. Indeed, recently observed changes in geometrid spatiotemporal dynamics represent both new research opportunities and challenges for empirically testing drivers of intra- and interspecific spatial synchrony, including the role of trophic interactions and biological traits (e.
View Article and Find Full Text PDFThe mountain birch [Betula pubescens var. pumila (L.)] forest in the Subarctic is periodically exposed to insect outbreaks, which are expected to intensify due to climate change.
View Article and Find Full Text PDFInsect herbivory is known to augment emissions of biogenic volatile organic compounds (BVOCs). Yet few studies have quantified BVOC responses to insect herbivory in natural populations in pan-Arctic regions. Here, we assess how quantitative and qualitative BVOC emissions change with increasing herbivore feeding intensity in the Subarctic mountain birch ( var (L.
View Article and Find Full Text PDFSustainable management of wildlife populations can be aided by building models that both identify current drivers of natural dynamics and provide near-term predictions of future states. We employed a Strategic Foresight Protocol (SFP) involving stakeholders to decide the purpose and structure of a dynamic state-space model for the population dynamics of the Willow Ptarmigan, a popular game species in Norway. Based on local knowledge of stakeholders, it was decided that the model should include food web interactions and climatic drivers to provide explanatory predictions.
View Article and Find Full Text PDFSpatial synchrony in population dynamics can be caused by dispersal or spatially correlated variation in environmental factors like weather (Moran effect). Distinguishing between these mechanisms is challenging for natural populations, and the study of dispersal-induced synchrony in particular has been dominated by theoretical modelling and laboratory experiments. The goal of the present study was to evaluate the evidence for dispersal as a cause of meso-scale (distances of tens of kilometres) spatial synchrony in natural populations of the two cyclic geometrid moths Epirrita autumnata and Operophtera brumata in sub-arctic mountain birch forest in northern Norway.
View Article and Find Full Text PDFA recent paper claims the existence of one of the most large-scale travelling waves ever recorded for any animal population. Here we address why conceptual and methodological pitfalls may have served to exaggerate or even impose the spatial patterns reported. Photo credit: Jane U.
View Article and Find Full Text PDFThe autumnal moth (Epirrita autumnata) is a cyclically outbreaking forest Lepidoptera with circumpolar distribution and substantial impact on Northern ecosystems. We have isolated 21 microsatellites from the species to facilitate population genetic studies of population cycles, outbreaks, and crashes. First, PCR primers and PCR conditions were developed to amplify 19 trinucleotide loci and two tetranucleotide loci in six multiplex PCR approaches and then analyzed for species specificity, sensitivity and precision.
View Article and Find Full Text PDFSaproxylic insects play an important part in decomposing dead wood in healthy forest ecosystems, but little is known about their role in the aftermath of large-scale forest mortality caused by pest insect outbreaks. We used window traps to study short-term changes in the abundance and community structure of saproxylic beetles following extensive mortality of mountain birch in sub-arctic northern Norway caused by an outbreak of geometrid moths. Three to five years after the outbreak, the proportion of obligate saproxylic individuals in the beetle community was roughly 10% higher in forest damaged by the outbreak than in undamaged forest.
View Article and Find Full Text PDFThe increased spread of insect outbreaks is among the most severe impacts of climate warming predicted for northern boreal forest ecosystems. Compound disturbances by insect herbivores can cause sharp transitions between vegetation states with implications for ecosystem productivity and climate feedbacks. By analysing vegetation plots prior to and immediately after a severe and widespread outbreak by geometrid moths in the birch forest-tundra ecotone, we document a shift in forest understorey community composition in response to the moth outbreak.
View Article and Find Full Text PDFFor trophic interactions to generate population cycles and complex spatio-temporal patterns, like travelling waves, the spatial dynamics must be matched across trophic levels. Here, we propose a spatial methodological approach for detecting such spatial match-mismatch and apply it to geometrid moths and their larval parasitoids in northern Norway, where outbreak cycles and travelling waves occur. We found clear evidence of spatial mismatch, suggesting that the spatially patterned moth cycles in this system are probably ruled by trophic interactions involving other agents than larval parasitoids.
View Article and Find Full Text PDFClimatically driven Moran effects have often been invoked as the most likely cause of regionally synchronized outbreaks of insect herbivores without identifying the exact mechanism. However, the degree of match between host plant and larval phenology is crucial for the growth and survival of many spring-feeding pest insects, suggesting that a phenological match/mismatch-driven Moran effect may act as a synchronizing agent. We analyse the phase-dependent spatial dynamics of defoliation caused by cyclically outbreaking geometrid moths in northern boreal birch forest in Fennoscandia through the most recent massive outbreak (2000-2008).
View Article and Find Full Text PDFAlthough climatic forcing has been suspected to be the most common cause of spatial population synchrony owing to the Moran effect, it has proved difficult to disentangle the impact of climate from other possible causes of synchrony based on population survey data. Nonlinear population responses to climatic variation may be a part of this difficulty, but they can also provide an opportunity to highlight the climate impacts through targeted survey designs. In particular, when species distribution ranges encompass consistent spatial gradients in climate (e.
View Article and Find Full Text PDF1. Range expansions mediated by recent climate warming have been documented for many insect species, including some important forest pests. However, whether climate change also influences the eruptive dynamics of forest pest insects, and hence the ecological and economical consequences of outbreaks, is largely unresolved.
View Article and Find Full Text PDF