Young vine decline (YVD), caused by several taxonomically different fungi, results in the decline and death of grapevines within a few years after planting. Infection can occur in nursery mother blocks and/or at several stages in the nursery propagation process, but the final plant material may remain asymptomatic. Four nurseries that sell ready-to-plant grapevines in Canada were sampled to evaluate the health status with regard to YVD fungi, including Botryosphaeriaceae spp.
View Article and Find Full Text PDFCucumber necrosis virus (CNV) is a (+)ssRNA virus that elicits spreading local and systemic necrosis in Nicotiana benthamiana. We previously showed that the CNV coat protein (CP) arm functions as a chloroplast transit peptide that targets a CP fragment containing the S and P domains to chloroplasts during infection. Here we show that several CP arm mutants that inefficiently target chloroplasts, along with a mutant that lacks the S and P domains, show an early onset of more localized necrosis along with protracted induction of pathogenesis related protein (PR1a).
View Article and Find Full Text PDFCucumber necrosis virus (CNV) is a T = 3 icosahedral virus with a (+)ssRNA genome. The N-terminal CNV coat protein arm contains a conserved, highly basic sequence ("KGRKPR"), which we postulate is involved in RNA encapsidation during virion assembly. Seven mutants were constructed by altering the CNV "KGRKPR" sequence; the four basic residues were mutated to alanine individually, in pairs, or in total.
View Article and Find Full Text PDFUnlabelled: Next-generation sequence analysis of virus-like particles (VLPs) produced during agroinfiltration of cucumber necrosis virus (CNV) coat protein (CP) and of authentic CNV virions was conducted to assess if host RNAs can be encapsidated by CNV CP. VLPs containing host RNAs were found to be produced during agroinfiltration, accumulating to approximately 1/60 the level that CNV virions accumulated during infection. VLPs contained a variety of host RNA species, including the major rRNAs as well as cytoplasmic, chloroplast, and mitochondrial mRNAs.
View Article and Find Full Text PDFCucumber leaf spot virus (CLSV) is a member of the Aureusvirus genus, family Tombusviridae. The auxiliary replicase of Tombusvirids has been found to localize to endoplasmic reticulum (ER), peroxisomes or mitochondria; however, localization of the auxiliary replicase of aureusviruses has not been determined. We have found that the auxiliary replicase of CLSV (p25) fused to GFP colocalizes with ER and that three predicted transmembrane domains (TMDs) at the N-terminus of p25 are sufficient for targeting, although the second and third TMDs play the most prominent roles.
View Article and Find Full Text PDFTombusviruses replicate on pre-existing organelles such as peroxisomes or mitochondria, the membranes of which become extensively reorganized into multivesicular bodies (MVBs) during the infection process. Cucumber necrosis virus (CNV) has previously been shown to replicate in association with peroxisomes in yeast. We show that CNV induces MVBs from peroxisomes in infected plants and that GFP-tagged p33 auxiliary replicase protein colocalizes with YFP(SKL), a peroxisomal marker.
View Article and Find Full Text PDF