Cell-targeting conjugates of Saporin 6, a ribosome inactivating protein (RIP), were prepared using the Saporin Ala 157 Cys mutant, a small molecule inhibitor (SMI) of integrins αβ/αβ, and a potent cytotoxin, auristatin F (AF). The conjugates selectively and potently inhibited proliferation of tumor cells expressing the target integrins. We anticipate that the small molecule-RIP bioconjugate approach can be broadly applied using other small molecule drugs.
View Article and Find Full Text PDFNAD(+) metabolism is an essential regulator of cellular redox reactions, energy pathways, and a substrate provider for NAD(+) consuming enzymes. We recently demonstrated that enhancement of NAD(+)/NADH levels in breast cancer cells with impaired mitochondrial NADH dehydrogenase activity, through augmentation of complex I or by supplementing tumor cell nutrients with NAD(+) precursors, inhibits tumorigenicity and metastasis. To more fully understand how aberrantly low NAD(+) levels promote tumor cell dissemination, we here asked whether inhibition of NAD(+) salvage pathway activity by reduction in nicotinamide phosphoribosyltransferase (NAMPT) expression can impact metastasis and tumor cell adhesive functions.
View Article and Find Full Text PDFA chemically defined anti-CXCR4-auristatin antibody-drug conjugate (ADC) was synthesized that selectively eliminates tumor cells overexpressing the CXCR4 receptor. The unnatural amino acid p-acetylphenylalanine (pAcF) was site-specifically incorporated into an anti-CXCR4 immunoglobulin G (IgG) and conjugated to an auristatin through a stable, non-cleavable oxime linkage to afford a chemically homogeneous ADC. The full-length anti-CXCR4 ADC was selectively cytotoxic to CXCR4(+) cancer cells in vitro (half maximal effective concentration (EC50 )≈80-100 pM).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2012
Antibody-drug conjugates (ADCs) allow selective targeting of cytotoxic drugs to cancer cells presenting tumor-associated surface markers, thereby minimizing systemic toxicity. Traditionally, the drug is conjugated nonselectively to cysteine or lysine residues in the antibody. However, these strategies often lead to heterogeneous products, which make optimization of the biological, physical, and pharmacological properties of an ADC challenging.
View Article and Find Full Text PDFIntegrins αvβ3 and αvβ6 are highly expressed on tumor cells and/or by the tumor vasculature of many human cancers, and represent promising targets for anticancer therapy. Novel chemically programmed antibodies (cpAbs) targeting these integrins were prepared using the catalytic aldolase Antibody (Ab) programming strategy. The effects of the cpAbs on cellular functions related to tumor progression were examined in vitro using tumor cell lines and their cognate integrin ligands, fibronectin and osteopontin.
View Article and Find Full Text PDFWe report a strategy for the generation of heterodimeric protein conjugates using an unnatural amino acid with orthogonal reactivity. This paper addresses the challenges of site-specificity and homogeneity with respect to the synthesis of bivalent proteins and antibody-drug conjugates. There are numerous antibody-drug conjugates in preclinical and clinical development, yet these are based either on nonspecific lysine coupling chemistry or on disulfide modification made difficult by the large number of cysteines in antibodies.
View Article and Find Full Text PDFImmunoconjugates and multispecific antibodies are rapidly emerging as highly potent experimental therapeutics against cancer. We have developed a method to incorporate an unnatural amino acid, p-acetylphenylalanine (pAcPhe) into an antibody antigen binding fragment (Fab) targeting HER2 (human epidermal growth factor receptor 2), allowing site-specific labeling without disrupting antigen binding. Expression levels of the pAcPhe-containing proteins were comparable to that of wild-type protein in shake-flask and fermentation preparations.
View Article and Find Full Text PDFAdvanced metastatic disease is difficult to manage and specific therapeutic targets are rare. We showed earlier that metastatic breast cancer cells use the activated conformer of adhesion receptor integrin alphavbeta3 for dissemination. We now investigated if targeting this form of the receptor can impact advanced metastatic disease, and we analyzed the mechanisms involved.
View Article and Find Full Text PDFChemical programming of nine murine antibodies with catalytic aldolase activity was examined using compounds, equipped with diketone or pro-vinyl ketone linkers that inhibit integrin adhesion receptor functions. The results showed that most Abs were programmed using the diketone compounds in a manner similar to previously reported catalytic antibody 38C2. On the other hand, only those antibodies, which catalyzed the retro aldol reaction of the pro-vinyl ketone linkers efficiently, were programmed.
View Article and Find Full Text PDF