Environ Sci Technol
September 2013
Zinc(II) cyclen, a small molecule mimic of the enzyme carbonic anhydrase, was evaluated under rigorous conditions resembling those in an industrial carbon capture process: high pH (>12), nearly saturated salt concentrations (45% K2CO3) and elevated temperatures (100-130 °C). We found that the catalytic activity of zinc cyclen increased with increasing temperature and pH and was retained after exposure to a 45% w/w K2CO3 solution at 130 °C for 6 days. However, high bicarbonate concentrations markedly reduced the activity of the catalyst.
View Article and Find Full Text PDFIn nature, the zinc metalloenzyme carbonic anhydrase II (CAII) efficiently catalyzes the conversion of carbon dioxide (CO2) to bicarbonate under physiological conditions. Many research efforts have been directed towards the development of small molecule mimetics that can facilitate this process and thus have a beneficial environmental impact, but these efforts have met very limited success. Herein, we undertook quantum mechanical calculations of four mimetics, 1,5,9-triazacyclododedacane, 1,4,7,10-tetraazacyclododedacane, tris(4,5-dimethyl-2-imidazolyl)phosphine, and tris(2-benzimidazolylmethyl)amine, in their complexed form either with the Zn(2+) or the Co(2+) ion and studied their reaction coordinate for CO2 hydration.
View Article and Find Full Text PDFAims: Estimates suggest that the drug discovery and development processes take between 10 and 15 years, with costs ranging between US$500 million and $2 billion. A growing number of bacteria have become resistant to approved antimicrobials. For example, the Gram-negative bacterium Acinetobacter baumannii has become multidrug resistant (MDR) and is now an important pathogen to the US military in terms of wound infections.
View Article and Find Full Text PDFEarly cancer diagnosis is very important for the prevention or mitigation of metastasis. However, effective and efficient methods are needed to improve the diagnosis and assessment of cancer. Here, we report a single-step detection method using a nanoplasmonic aptamer sensor (aptasensor), targeting a vascular endothelial growth factor-165 (VEGF(165)), a predominant biomarker of cancer angiogenesis.
View Article and Find Full Text PDFDevelopment of small footprint, disposable, fast, and inexpensive devices for pathogen detection in the field and clinic would benefit human and veterinary medicine by allowing evidence-based responses to future out breaks. We designed and tested an integrated nucleic acid extraction and amplification device employing a loop-mediated isothermal amplification (LAMP) or reverse transcriptase-LAMP assay. Our system provides a screening tool with polymerase-chain-reaction-level sensitivity and specificity for outbreak detection, response, and recovery.
View Article and Find Full Text PDFNanoarray fabrication is a multidisciplinary endeavor encompassing materials science, chemical engineering, and biology. We formed nanoarrays via a new technique, porphyrin-based photocatalytic nanolithography. The nanoarrays, with controlled features as small as 200 nm, exhibited regularly ordered patterns and may be appropriate for (a) rapid and parallel proteomics screening of immobilized biomolecules, (b) protein-protein interactions, and/or (c) biophysical and molecular biology studies involving spatially dictated ligand placement.
View Article and Find Full Text PDFPhotocatalytic lithography (PCL) is an inexpensive, fast, and robust method of oxidizing surface chemical moieties to produce patterned substrates. This technique has utility in basic biological research as well as various biochip applications. We report on porphyrin-based PCL for patterning poly(propylene sulfide) block copolymer films on gold substrates on the micrometer and submicrometer scales.
View Article and Find Full Text PDFPhotocatalytic lithography couples light with photoreactive coated mask materials to pattern surface chemistry. We excite porphyrins to create radical species that photocatalytically oxidize, and thereby pattern, chemistries in the local vicinity. The technique advantageously is suited for use with a wide variety of substrates.
View Article and Find Full Text PDFPresently, there is interest in making medical devices such as expandable stents and intravascular microactuators from shape memory polymer (SMP). One of the key challenges in realizing SMP medical devices is the implementation of a safe and effective method of thermally actuating various device geometries in vivo. A novel scheme of actuation by Curie-thermoregulated inductive heating is presented.
View Article and Find Full Text PDFTo analyze titanium's response to representative surgical wound environments, a study was conducted on commercially pure titanium (CPTi) and titanium, 6-aluminum, 4-vanadium (Ti-6Al-4V) exposed to phosphate-buffered saline (PBS) with 30 mM of hydrogen peroxide (H(2)O(2)) added. The study was characterized by simultaneous electrochemical atomic force microscopy (EC AFM) and step-polarization impedance spectroscopy (SPIS). Surfaces were covered with protective oxide domes that indicated topography changes with potential and time of immersion.
View Article and Find Full Text PDFSurfaces of commercially pure titanium and titanium, 6-aluminum, 4-vanadium were subjected to simultaneous polarization/impedance testing and in situ electrochemical atomic force microscopy imaging to evaluate how the structure and properties of the passive oxide film is affected by varying potential and hydration. Current transients were acquired via a step polarization impedance spectroscopy technique: the voltage was stepped between -1 and 1 V in 50 mV increments, while current transients and surface morphology were digitally recorded. Numerical Laplace transformation applied to the current transient data provided frequency-dependent admittance (impedance(-1)).
View Article and Find Full Text PDF