Publications by authors named "Jane Oliveira Peixoto"

Article Synopsis
  • White striping (WS) is a myopathy found in broiler chickens, marked by white stripes in muscle tissue and linked to economic losses, with its causes still unclear.
  • A study identified 30 differentially expressed genes in the breast muscle of affected chickens, highlighting 14 new candidates connected to muscle development, lipid metabolism, and collagen.
  • The findings suggest that while some genes might play a role in the early development of WS, the expression of others may change as the condition progresses.
View Article and Find Full Text PDF

Ca and P homeostasis across the egg-laying cycle is a complex process involving absorption in the small intestine, reabsorption/excretion in the kidneys, and eggshell gland secretion. Diets with inadequate calcium and phosphorus can interfere with their absorption and digestibility, resulting in eggshell quality losses and reduced productive life, affecting egg production and welfare. A better understanding of gene expression profiles in the kidneys of laying hens during the late egg-laying period could clarify the renal role in mineral metabolism at this late stage.

View Article and Find Full Text PDF

Introduction: White Striping (WS) and Wooden Breast (WB) pectoral myopathies are relevant disorders for contemporary broiler production worldwide. Several studies aimed to elucidate the genetic components associated with the occurrence of these myopathies. However, epigenetic factors that trigger or differentiate these two conditions are still unclear.

View Article and Find Full Text PDF

Introduction: Cryptorchidism is a hereditary anomaly characterized by the incomplete descent of one or both testicles to the scrotum. One of the challenges of this anomaly is that the retained testicle maintains its endocrine function. As a consequence, cryptorchid animals produce hormone-tainted meat in comparison to castrated animals and are likely to be more aggressive.

View Article and Find Full Text PDF

Animals with muscle hypertrophy phenotype are targeted by the broiler industry to increase the meat production and the quality of the final product. Studies characterizing the molecular machinery involved with these processes, such as quantitative trait loci studies, have been carried out identifying several candidate genes related to this trait; however, validation studies of these candidate genes in cell culture is scarce. The aim of this study was to evaluate as a candidate gene for muscle development and to validate its function in cell culture .

View Article and Find Full Text PDF

Locomotor problems are among one of the main concerns in the current poultry industry, causing major economic losses and affecting animal welfare. The most common bone anomalies in the femur are dyschondroplasia, femoral head separation (FHS), and bacterial chondronecrosis with osteomyelitis (BCO), also known as femoral head necrosis (FHN). The present study aimed to identify differentially expressed (DE) genes in the articular cartilage (AC) of normal and FHS-affected broilers by RNA-Seq analysis.

View Article and Find Full Text PDF

White Striping (WS) has been one of the main issues in poultry production in the last years since it affects meat quality. Studies have been conducted to understand WS and other myopathies in chickens, and some biological pathways have been associated to the prevalence of these conditions, such as extracellular calcium level, oxidative stress, localized hypoxia, possible fiber-type switching, and cellular repairing. Therefore, to understand the genetic mechanisms involved in WS, 15 functional candidate genes were chosen to be analyzed by quantitative PCR (qPCR) in breast muscle of normal and WS-affected chickens.

View Article and Find Full Text PDF

Background: The proximal femoral head separation (FHS) or epiphysiolysis is a prevalent disorder affecting the chicken femur epiphysis, being considered a risk factor to infection which can cause bacterial chondronecrosis with osteomyelitis in broilers. To identify the genetic mechanisms involved in epiphysiolysis, differentially expressed (DE) genes in the femur of normal and FHS-affected broilers were identified using RNA-Seq technology. Femoral growth plate (GP) samples from 35-day-old commercial male broilers were collected from 4 healthy and 4 FHS-affected broilers.

View Article and Find Full Text PDF

Background: Natural and artificial selection leads to changes in certain regions of the genome resulting in selection signatures that can reveal genes associated with the selected traits. Selection signatures may be identified using different methodologies, of which some are based on detecting contiguous sequences of homozygous identical-by-descent haplotypes, called runs of homozygosity (ROH), or estimating fixation index (F) of genomic windows that indicates genetic differentiation. This study aimed to identify selection signatures in a paternal broiler TT line at generations 7th and 16th of selection and to investigate the genes annotated in these regions as well as the biological pathways involved.

View Article and Find Full Text PDF

Single nucleotide polymorphism (SNP) markers are used to study population structure and conservation genetics, which permits assessing similarities regarding the linkage disequilibrium and information about the relationship among individuals. To investigate the population genomic structure of 300 females and 25 males from a commercial maternal pig line we analyzed linkage disequilibrium extent, inbreeding coefficients using genomic and conventional pedigree data, and population stratification. The average linkage disequilibrium (r2) was 0.

View Article and Find Full Text PDF