Caffeine is a psychostimulant frequently consumed by adults and children, often in combination with high levels of sugar. Chronic pretreatment with either substance can amplify both amphetamine and cocaine-induced hyperactivity in rodents. The present study sought to elucidate whether age at the time of exposure to sugar and/or caffeine alters sensitivity to an acute illicit psychostimulant (methamphetamine, [METH]) challenge in adulthood.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
July 2017
Schizophrenia is associated with significant pathophysiological changes to interneurons within the prefrontal cortex (PFC), with mRNA and protein changes associated with the GABA network localized to specific interneuron subtypes. Methamphetamine is a commonly abused psychostimulant that can induce chronic psychosis and symptoms that are similar to schizophrenia, suggesting that chronic METH induced psychosis may be associated with similar brain pathology to schizophrenia in the PFC. The aim of this study, therefore, was to examine mRNA expression of interneuron markers across two regions of the PFC (prelimbic (PRL) and orbitofrontal cortices (OFC)) following METH sensitization, an animal model of METH psychosis.
View Article and Find Full Text PDFCaffeine is a psychostimulant commonly consumed with high levels of sugar. The increased availability of highly caffeinated, high sugar energy drinks could put some consumers at risk of being exposed to high doses of caffeine and sugar. Notably, research that has examined the consequences of this combination is limited.
View Article and Find Full Text PDFPsychotic disorders, such as schizophrenia, are characterized by prevalent and persistent executive deficits that are believed to be the result of dysfunctional inhibitory gamma-aminobutyric acid (GABA) processing of the prefrontal cortex (PFC). Methamphetamine (METH) is a commonly used psychostimulant that can induce psychotic and cognitive symptoms that are indistinguishable to schizophrenia, suggesting that METH-induced psychosis may have a similar GABAergic profile of the PFC. As the PFC consists of multiple subregions, the aim of the current study was to investigate changes to GABAergic mRNA expression in the prelimbic (PRL) and orbitofrontal (OFC) cortices of the PFC in rats sensitized to repeated METH administration.
View Article and Find Full Text PDFCaffeine is a plant-derived psychostimulant and a common additive found in a wide range of foods and pharmaceuticals. The orbitofrontal cortex (OFC) is rapidly activated by flavours, integrates gustatory and olfactory information, and plays a critical role in decision-making, with dysfunction contributing to psychopathologies and neurodegenerative conditions. This study investigated whether long-term consumption of caffeine causes changes to behavior and protein expression in the OFC.
View Article and Find Full Text PDFIn most Westernized societies, there has been an alarming increase in the consumption of sugar-sweetened drinks. For many adults these drinks represent a substantial proportion of their total daily caloric intake. Here we investigated whether extended exposure to sugar changes behavior and protein expression in the orbitofrontal cortex (OFC).
View Article and Find Full Text PDFInhibitory gamma-aminobutyric acid (GABA)-mediated neurotransmission plays an important role in the regulation of the prefrontal cortex (PFC), with increasing evidence suggesting that dysfunctional GABAergic processing of the PFC may underlie certain deficits reported across psychotic disorders. Methamphetamine (METH) is a psychostimulant that induces chronic psychosis in a subset of users, with repeat administration producing a progressively increased vulnerability to psychotic relapse following subsequent drug administration (sensitization). The aim here was to investigate changes to GABAergic mRNA expression in the PFC of rats sensitized to METH using quantitative polymerase chain reaction (qPCR).
View Article and Find Full Text PDFRepeat administration of psychostimulants, such as methamphetamine, produces a progressive increase in locomotor activity (behavioral sensitization) in rodents that is believed to represent the underlying neurochemical changes driving psychoses. Alterations to the prefrontal cortex (PFC) are suggested to mediate the etiology and maintenance of these behavioral changes. As such, the aim of the current study was to investigate changes to protein expression in the PFC in male rats sensitized to methamphetamine using quantitative label-free shotgun proteomics.
View Article and Find Full Text PDF