Type 2 diabetes (T2D) is a complex and progressive disease requiring polypharmacy to manage hyperglycaemia and cardiovascular risk factors. However, most patients do not achieve combined treatment goals. To address this therapeutic gap, we have developed MEDI4166, a novel glucagon-like peptide-1 (GLP-1) receptor agonist peptide fused to a proprotein convertase subtilisin/kexin type 9 (PCSK9) neutralising antibody that allows for glycaemic control and low-density lipoprotein cholesterol (LDL-C) lowering in a single molecule.
View Article and Find Full Text PDFAntibody-drug conjugate (ADC) which delivers cytotoxic drugs specifically into targeted cells through internalization and lysosomal trafficking has emerged as an effective cancer therapy. We show that a bivalent biparatopic antibody targeting two non-overlapping epitopes on HER2 can induce HER2 receptor clustering, which in turn promotes robust internalization, lysosomal trafficking, and degradation. When conjugated with a tubulysin-based microtubule inhibitor, the biparatopic ADC demonstrates superior anti-tumor activity over ado-trastuzumab emtansine (T-DM1) in tumor models representing various patient subpopulations, including T-DM1 eligible, T-DM1 ineligible, and T-DM1 relapsed/refractory.
View Article and Find Full Text PDFThe neurotrophin receptor p75(NTR) is utilized by a variety of pathogens to gain entry into the central nervous system (CNS). We tested if this entry portal might be exploited using a phage display library to isolate internalizing antibodies that target the CNS in vivo. By applying a phage library that expressed human single chain variable fragment (scFv) antibodies on their surface to a transected sciatic nerve, we showed that (1) phage conjugated to anti-p75(NTR) antibody or phage scFv library pre-panned against p75(NTR) are internalized by neurons expressing p75(NTR); (2) subsequent retrograde axonal transport separates internalized phage from the applied phage; and, (3) internalized phage can be recovered from a proximal ligature made on a nerve.
View Article and Find Full Text PDFRibosome display is a polymerase chain reaction-based in vitro display technology that is well suited to the selection and evolution of high affinity antibodies. Both eukaryotic and prokaryotic translation systems have been applied to ribosome display, and the technology's utility has been demonstrated in the antibody isolation process. In particular, ribosome display lends itself to the evolution of functional characteristics, such as potency, of lead candidate antibodies to provide therapeutic antibodies.
View Article and Find Full Text PDF