Publications by authors named "Jane E Wright"

Constraining a molecule in its bioactive conformation via macrocyclization represents an attractive strategy to rationally design functional chemical probes. While this approach has been applied to enzyme inhibitors or receptor antagonists, to date it remains unprecedented for bifunctional molecules that bring proteins together, such as PROTAC degraders. Herein, we report the design and synthesis of a macrocyclic PROTAC by adding a cyclizing linker to the BET degrader MZ1.

View Article and Find Full Text PDF

Hydroxylation and fluorination of proline alters the pyrrolidine ring pucker and the trans:cis amide bond ratio in a stereochemistry-dependent fashion, affecting molecular recognition of proline-containing molecules by biological systems. While hydroxyprolines and fluoroprolines are common motifs in medicinal and biological chemistry, the synthesis and molecular properties of prolines containing both modifications, i.e.

View Article and Find Full Text PDF

The cold shock domain is one of the most highly conserved motifs between bacteria and higher eukaryotes. Y-box-binding proteins represent a subfamily of cold shock domain proteins with pleiotropic functions, ranging from transcription in the nucleus to translation in the cytoplasm. These proteins have been investigated in all major model organisms except Caenorhabditis elegans.

View Article and Find Full Text PDF

Messenger RNA translation is regulated by RNA-binding proteins and small non-coding RNAs called microRNAs. Even though we know the majority of RNA-binding proteins and microRNAs that regulate messenger RNA expression, evidence of interactions between the two remain elusive. The role of the RNA-binding protein GLD-1 as a translational repressor is well studied during Caenorhabditis elegans germline development and maintenance.

View Article and Find Full Text PDF

Pluripotent cells have the unique ability to differentiate into diverse cell types. Over the past decade our understanding of the mechanisms underlying pluripotency, and particularly the role of transcriptional regulation, has increased dramatically. However, there is growing evidence for 'RNA-based' regulation of pluripotency.

View Article and Find Full Text PDF

Translational repression is often accompanied by mRNA degradation. In contrast, many mRNAs in germ cells and neurons are "stored" in the cytoplasm in a repressed but stable form. Unlike repression, the stabilization of these mRNAs is surprisingly little understood.

View Article and Find Full Text PDF

RNA-binding proteins (RBPs) are critical regulators of gene expression. To understand and predict the outcome of RBP-mediated regulation a comprehensive analysis of their interaction with RNA is necessary. The signal transduction and activation of RNA (STAR) family of RBPs includes developmental regulators and tumour suppressors such as Caenorhabditis elegans GLD-1, which is a key regulator of germ cell development.

View Article and Find Full Text PDF

Genes can maintain spatiotemporal expression patterns by long-range interactions between cis-acting elements. The cystic fibrosis transmembrane conductance regulator gene (CFTR) is expressed primarily in epithelial cells. An element located within a DNase I-hypersensitive site (DHS) 10 kb into the first intron was previously shown to augment CFTR promoter activity in a tissue-specific manner.

View Article and Find Full Text PDF

Sirtuins, also designated class III histone deacetylases, are implicated in the regulation of cell division, apoptosis, DNA damage repair, genomic silencing and longevity. The nucleolar Sirtuin7 (SIRT7) was reported to be involved in the regulation of ribosomal gene (rDNA) transcription, but there are no data concerning the regulation of SIRT7 during the cell cycle. Here we have analyzed the behavior of endogenous SIRT7 during mitosis, while rDNA transcription is repressed.

View Article and Find Full Text PDF

Human ribosomal genes are located in NORs (nucleolar organizer regions) on the short arms of acrocentric chromosomes. During metaphase, previously active NORs appear as prominent chromosomal features termed secondary constrictions, which are achromatic in chromosome banding and positive in silver staining. The architectural RNA polymerase I transcription factor UBF (upstream binding factor) binds extensively across the ribosomal gene repeat throughout the cell cycle.

View Article and Find Full Text PDF

Human ribosomal genes (rDNA) are located in nucleolar organizer regions (NORs) on the short arms of acrocentric chromosomes. Metaphase NORs that were transcriptionally active in the previous cell cycle appear as prominent chromosomal features termed secondary constrictions that are achromatic in chromosome banding and positive in silver staining. The architectural RNA polymerase I (pol I) transcription factor UBF binds extensively across rDNA throughout the cell cycle.

View Article and Find Full Text PDF