The obligate intracellular bacterium Chlamydia trachomatis serovar E is the most prevalent cause of bacterial sexually transmitted disease. With an established requirement for iron, the developmental cycle arrests at the intracellular reticulate body stage during iron restriction, resulting in a phenomenon termed persistence. Persistence has implications in natural infections for altered expression of virulence factors and antigens, in addition to a potential role in producing chronic infection.
View Article and Find Full Text PDFChlamydia trachomatis is an important cause of immune-mediated damage to the reproductive tract of infected patients. Certain chlamydial antigens and host genetic factors have been identified as contributing to immunopathological events, but a comprehensive understanding of specific components involved in destructive vs. protective immune responses to chlamydial infections is far from clear.
View Article and Find Full Text PDFThe obligate intracellular bacterium Chlamydia trachomatis requires iron in order to complete its developmental cycle. Addition of an iron-chelating drug, Desferal (deferoxamine mesylate), to infected cell culture causes Chlamydia to enter persistence. Here, we explore the ability of a stably-transfected cell line with inducible over-expression of the eukaryotic iron efflux protein ferroportin to starve C.
View Article and Find Full Text PDFChlamydial 60-kDa heat shock proteins (cHsp60s) are known to play a prominent role in the immunopathogenesis of disease. It is also known that several stress-inducing growth conditions, such as heat, iron deprivation, or exposure to gamma interferon, result in the development of persistent chlamydial forms that often exhibit enhanced expression of cHsp60. We have shown previously that the expression of cHsp60 is greatly enhanced in Chlamydia trachomatis serovar E propagated in an iron-deficient medium.
View Article and Find Full Text PDFSeveral chlamydial antigens have been detected in the infected epithelial cell cytosol and on the host cell surface prior to their presumed natural release at the end of the 72-96 h developmental cycle. These extra-inclusion antigens are proposed to influence vital host cell functions, antigen trafficking and presentation and, ultimately, contribute to a prolonged inflammatory response. To begin to dissect the mechanisms for escape of these antigens from the chlamydial inclusion, which are enhanced on exposure to antibiotics, polarized endometrial epithelial cells (HEC-1B) were infected with Chlamydia trachomatis serovar E for 36 h or 48 h.
View Article and Find Full Text PDFThe Chlamydia trachomatis divalent cation-dependent regulator (DcrA), encoded by open reading frame CT296, is a distant relative of the ferric uptake regulator (Fur) family of iron-responsive regulators. Chlamydial DcrA specifically binds to a consensus Escherichia coli Fur box and is able to complement an E. coli Fur mutant.
View Article and Find Full Text PDFNumerous investigations have shown that 70-kDa heat shock protein (Hsp70) homologs interact tightly with hydrophobic proteins and functionally assist proteins in membranous organelles and environments. One such protein is the Chlamydia trachomatis Hsp70 that is associated with isolated outer membrane complexes of infectious elementary bodies (EB). Previous observations have indicated that chlamydial Hsp70 plays a role in EB attachment to, or entry into, endometrial epithelial cells.
View Article and Find Full Text PDF