There is a continuous arms race between pathogens and their host plants. However, successful pathogens, such as phytopathogenic oomycetes, secrete effector proteins to manipulate host defense responses for disease development. Structural analyses of these effector proteins reveal the existence of regions that fail to fold into three-dimensional structures, intrinsically disordered regions (IDRs).
View Article and Find Full Text PDFThe rhizosphere is a chemically complex environment that harbors a strikingly diverse microbial community. The past few decades have seen a rapid growth in the body of literature on plant-microbe-microbe interactions and plant health. Thus, the aim of this paper is to review current knowledge on plant-microbe-microbe (specifically bacteria) interactions in the rhizosphere and how these influence rhizosphere microbiomes and impact plant health.
View Article and Find Full Text PDFOomycetes of the genus encompass several of the most successful plant pathogens described to date. The success of infection by species is attributed to the pathogens' ability to secrete effector proteins that alter the host's physiological processes. Structural analyses of effector proteins mainly from bacterial and viral pathogens have revealed the presence of intrinsically disordered regions that host short linear motifs (SLiMs).
View Article and Find Full Text PDFPhytopathogenic oomycetes are known to successfully infect their hosts due to their ability to secrete effector proteins. Of interest to many researchers are effectors with the N-terminal RxLR motif (Arginine-any amino acid-Leucine-Arginine). Owing to advances in genome sequencing, we can now comprehend the high level of diversity among oomycete effectors, and similarly, their conservation within and among species referred to here as "ore" xLR ffectors (CREs).
View Article and Find Full Text PDFPlants are constantly challenged by various environmental stressors ranging from abiotic-sunlight, elevated temperatures, drought, and nutrient deficits, to biotic factors-microbial pathogens and insect pests. These not only affect the quality of harvest but also the yield, leading to substantial annual crop losses, worldwide. Although plants have a multi-layered immune system, phytopathogens such as species of the oomycete genus , can employ elaborate mechanisms to breach this defense.
View Article and Find Full Text PDF