Publications by authors named "Jane C Marks"

spp. diatoms contain obligate, nitrogen-fixing endosymbionts, or diazoplasts, derived from cyanobacteria. These algae are a rare example of photosynthetic eukaryotes that have successfully coupled oxygenic photosynthesis with oxygen-sensitive nitrogenase activity.

View Article and Find Full Text PDF
Article Synopsis
  • The carbon stored in soil plays a crucial role in global climate stability, surpassing carbon in plants and the atmosphere, with decomposer microorganisms significantly influencing soil carbon dynamics.
  • A 15-year warming experiment showed a consistent decrease in soil microbial growth rates, regardless of taxa, suggesting uniform responses to temperature changes across different microbial groups.
  • Long-term warming resulted in reduced soil carbon content and microbial biomass, indicating that the impacts of warming on microbial growth and soil health could contribute to feedback mechanisms affecting climate change.
View Article and Find Full Text PDF
Article Synopsis
  • Microbial decomposition of leaves in rivers starts quickly and involves various species of fungi and bacteria, influenced by stream conditions and leaf type.
  • This study investigates the growth of these microbes during decomposition, comparing those that come with the leaves versus those that colonize in the water.
  • Findings show most fungi are dormant upon entering water, while bacteria are actively growing, highlighting the contrasting roles of fungal and bacterial populations in aquatic ecosystems.
View Article and Find Full Text PDF
Article Synopsis
  • Predation plays a crucial role in ecosystems, impacting food webs, energy flow, and nutrient cycling, though most research has focused on larger predators rather than microscopic ones like bacteria.
  • This study found that obligate predatory bacteria exhibited significantly higher growth and carbon uptake (36% and 211% more, respectively) compared to nonpredatory bacteria across various environments, while facultative predators showed only slightly enhanced rates.
  • The research indicates that increased energy flow in microbial communities boosts the role of predatory bacteria, suggesting that more productive environments lead to stronger predatory influence on lower trophic levels.
View Article and Find Full Text PDF
Article Synopsis
  • Microorganisms play a crucial role in breaking down soil carbon, and their activity can change with rising temperatures, potentially influencing climate change.
  • This study investigates how different bacterial groups from various climates (Arctic, boreal, temperate, and tropical) respond to temperature changes, revealing that each group's growth sensitivity to temperature varies.
  • The research indicates that the traits of these bacterial communities can help predict how carbon cycling will respond to climate change globally.
View Article and Find Full Text PDF

Leaf litter provides an important nutrient subsidy to headwater streams, but little is known about how tree genetics influence energy pathways from litter to higher trophic levels. Despite the charge to quantify carbon (C) and nitrogen (N) pathways from decomposing litter, the relationship between litter decomposition and aquatic consumers remains unresolved. We measured litter preference (attachments to litter), C and N assimilation rates, and growth rates of a shredding caddisfly (Hesperophylax magnus, Limnephilidae) in response to leaf litter of different chemical and physical phenotypes using Populus cross types (P.

View Article and Find Full Text PDF

Microorganisms perform most decomposition on Earth, mediating carbon (C) loss from ecosystems, and thereby influencing climate. Yet, how variation in the identity and composition of microbial communities influences ecosystem C balance is far from clear. Using quantitative stable isotope probing of DNA, we show how individual bacterial taxa influence soil C cycling following the addition of labile C (glucose).

View Article and Find Full Text PDF

Identification of microorganisms that facilitate the cycling of nutrients in freshwater is paramount to understanding how these ecosystems function. Here, we identify growing aquatic bacteria using H218O quantitative stable isotope probing. During 8 day incubations in 97 atom % H218O, 54% of the taxa grew.

View Article and Find Full Text PDF

Invasive species alter ecosystems, threaten native and endangered species, and have negative economic impacts. Knowing where invading individuals are from and when they arrive to a new site can guide management. Here, we evaluated how well the stable hydrogen isotope composition (δ2H) records the recent origin and time since arrival of specimens of the invasive Japanese beetle (Popillia japonica Newman) captured near the Portland International Airport (Oregon, U.

View Article and Find Full Text PDF

Phylogeny is an ecologically meaningful way to classify plants and animals, as closely related taxa frequently have similar ecological characteristics, functional traits and effects on ecosystem processes. For bacteria, however, phylogeny has been argued to be an unreliable indicator of an organism's ecology owing to evolutionary processes more common to microbes such as gene loss and lateral gene transfer, as well as convergent evolution. Here we use advanced stable isotope probing with (13)C and (18)O to show that evolutionary history has ecological significance for in situ bacterial activity.

View Article and Find Full Text PDF

Foliar chemistry influences leaf decomposition, but little is known about how litter chemistry affects the assemblage of bacterial communities during decomposition. Here we examined relationships between initial litter chemistry and the composition of the bacterial community in a stream ecosystem. We incubated replicated genotypes of Populus fremontii and P.

View Article and Find Full Text PDF

Bacteria grow and transform elements at different rates, and as yet, quantifying this variation in the environment is difficult. Determining isotope enrichment with fine taxonomic resolution after exposure to isotope tracers could help, but there are few suitable techniques. We propose a modification to stable isotope probing (SIP) that enables the isotopic composition of DNA from individual bacterial taxa after exposure to isotope tracers to be determined.

View Article and Find Full Text PDF

Native soil carbon (C) can be lost in response to fresh C inputs, a phenomenon observed for decades yet still not understood. Using dual-stable isotope probing, we show that changes in the diversity and composition of two functional bacterial groups occur with this 'priming' effect. A single-substrate pulse suppressed native soil C loss and reduced bacterial diversity, whereas repeated substrate pulses stimulated native soil C loss and increased diversity.

View Article and Find Full Text PDF

Leaf litter decomposition plays a major role in nutrient dynamics in forested streams. The chemical composition of litter affects its processing by microorganisms, which obtain nutrients from litter and from the water column. The balance of these fluxes is not well known, because they occur simultaneously and thus are difficult to quantify separately.

View Article and Find Full Text PDF

Retail poultry products are known sources of antibiotic-resistant Escherichia coli, a major human health concern. Consumers have a range of choices for poultry, including conventional, organic, kosher, and raised without antibiotics (RWA) - designations that are perceived to indicate differences in quality and safety. However, whether these categories vary in the frequency of contamination with antibiotic-resistant E.

View Article and Find Full Text PDF

Reciprocal subsidies between rivers and terrestrial habitats are common where terrestrial leaf litter provides energy to aquatic invertebrates while emerging aquatic insects provide energy to terrestrial predators (e.g., birds, lizards, spiders).

View Article and Find Full Text PDF

Understanding river food webs requires distinguishing energy derived from primary production in the river itself (autochthonous) from that produced externally (allochthonous), yet there are no universally applicable and reliable techniques for doing so. We compared the natural abundance stable isotope ratios of hydrogen (deltaD) of allochthonous and autochthonous energy sources in four different aquatic ecosystems. We found that autochthonous organic matter is uniformly far more depleted in deuterium (lower deltaD values) than allochthonous: an average difference of approximately 100% per hundred.

View Article and Find Full Text PDF

Can heritable traits in a single species affect an entire ecosystem? Recent studies show that such traits in a common tree have predictable effects on community structure and ecosystem processes. Because these 'community and ecosystem phenotypes' have a genetic basis and are heritable, we can begin to apply the principles of population and quantitative genetics to place the study of complex communities and ecosystems within an evolutionary framework. This framework could allow us to understand, for the first time, the genetic basis of ecosystem processes, and the effect of such phenomena as climate change and introduced transgenic organisms on entire communities.

View Article and Find Full Text PDF

Although it is understood that the composition of riparian trees can affect stream function through leaf litter fall, the potential effects of genetic variation within species are less understood. Using a naturally hybridizing cottonwood system, we examined the hypothesis that genetic differences among two parental species (Populus fremontii and P. angustifolia) and two groups of their hybrids (F1 and backcrosses to P.

View Article and Find Full Text PDF

Since its introduction ten years ago, Anolis sagrei has spread over much of Grand Cayman and is now more common in some habitats than the native anole, A. conspersus. Interspecific differences in body size, perch height, and microclimatic preference may have facilitated the colonization.

View Article and Find Full Text PDF