Background: In the Solomon Island, the dominant malaria vector, Anopheles farauti, is highly anthropophagic and increasingly exophilic and early biting. While long-lasting insecticide-treated nets remain effective against An. farauti, supplemental vector control strategies will be needed to achieve malaria elimination.
View Article and Find Full Text PDFBackground: Mosquito saliva elicits immune responses in humans following mosquito blood feeding. Detection of human antibodies recognizing the Anopheles gambiae salivary gland protein 6 (gSG6) or the gSG6-P1 peptide in residents of Africa, South America and Southeast Asia suggested the potential for these antibodies to serve as a universal marker to estimate human biting rates. Validating the utility of this approach requires concurrent comparisons of anopheline biting rates with antibodies to the gSG6 protein to determine the sensitivity and specificity of the assay for monitoring changes in vector populations.
View Article and Find Full Text PDFBackground: Malaria transmission varies in intensity amongst Solomon Island villages where Anopheles farauti is the only vector. This variation in transmission intensity might be explained by density-dependent processes during An. farauti larval development, as density dependence can impact adult size with associated fitness costs and daily survivorship.
View Article and Find Full Text PDF