Int J Numer Method Biomed Eng
February 2025
The present article is on pulsatile hemodynamics-induced sound-based diagnosis of stenosis in compliant arteries of three types: Coronary, carotid, and femoral. Considering axisymmetric stenosis in straight arteries along with clinically observed dimensions of the arteries and enveloping tissue, the present numerical study considers blood as a Newtonian fluid and both artery and tissue as isotropic and geometrically nonlinear (materialistically linear) solid. For the physiological fluid flexible-structure acoustic interaction (FfSAI) study, an in-house multiphysics solver is used for a parametric study-using various stenosis level (60%, 70%, and 80%) and stenosis length (2D and 4D); for each of the arteries.
View Article and Find Full Text PDFMicrofluid Nanofluidics
September 2022
The last two decades witnessed a significant advancement in the field of diluted and whole blood plasma separation. This is one of the common procedures used to diagnose, cure and treat numerous acute and chronic diseases. For this separation purpose, various types of geometries of microfluidic devices, such as T-channel, Y-channel, trifurcation, constriction-expansion, curved/bend/spiral channels, a combination of any of the two geometries, etc.
View Article and Find Full Text PDFUnlabelled: Ventilation of shared indoor spaces is crucial for mitigating air-borne infection spread among its occupants. Replacing the air in a room with fresh air is key to minimize the concentration of potentially infectious aerosol generated in the room. Recirculating air flow present at corners and around obstacles can trap air and infectious aerosol.
View Article and Find Full Text PDFWe experimentally and theoretically investigate a distinct problem of spreading, evaporation, and the associated dried deposits of a colloidal particle-laden aqueous sessile droplet on a surface in a saturated alcohol vapor environment. In particular, the effect of particle size on monodispersed suspensions and efficient self-sorting of bidispersed particles have been investigated. The alcohol vapor diffuses toward the droplet's curved liquid-vapor interface from the far field.
View Article and Find Full Text PDFAir-borne transmission can pose a major risk of infection spread in enclosed spaces. Venting the air out using exhaust fans and ducts is a common approach to mitigate the risk. In this work, we study the air flow set up by an exhaust fan in a typical shared washroom that can be a potential hot spot for COVID-19 transmission.
View Article and Find Full Text PDFCOVID (CoronaVirus Disease)-19, caused by severe acute respiratory syndrome-CoronaVirus-2 (SARS-CoV-2) virus, predominantly transmits via airborne route, as highlighted by recent studies. Furthermore, recently published titer measurements of SARS-CoV-2 in aerosols have disclosed that the coronavirus can survive for hours. A consolidated knowledge on the physical mechanism and governing rules behind the significantly long survival of coronavirus in aerosols is lacking, which is the subject of the present investigation.
View Article and Find Full Text PDFSurface engineering is an emerging technology to design antiviral surfaces, especially in the wake of COVID-19 pandemic. However, there is yet no general understanding of the rules and optimized conditions governing the virucidal properties of engineered surfaces. The understanding is crucial for designing antiviral surfaces.
View Article and Find Full Text PDFPrevious studies reported that the drying time of a respiratory droplet on an impermeable surface along with a residual film left on it is correlated with the coronavirus survival time. Notably, earlier virus titer measurements revealed that the survival time is surprisingly less on porous surfaces such as paper and cloth than that on impermeable surfaces. Previous studies could not capture this distinct aspect of the porous media.
View Article and Find Full Text PDFThe present study experimentally and numerically investigates the evaporation and resultant patterns of dried deposits of aqueous colloidal sessile droplets when the droplets are initially elevated to a high temperature before being placed on a substrate held at ambient temperature. The system is then released for natural evaporation without applying any external perturbation. Infrared thermography and optical profilometry are used as essential tools for interfacial temperature measurements and quantification of coffee-ring dimensions, respectively.
View Article and Find Full Text PDFCerebral microvascular occlusions cause restriction of blood supply to the brain, thus potentially severely impacting cognitive abilities. Thus, accurate prediction of thrombus growth in realistic geometries is important. Thrombi growth in an existing 13-generation cerebral microvasculature network is simulated here to study the haemodynamic effects of single and multiple blockages on the occlusion of the network.
View Article and Find Full Text PDF