Publications by authors named "Janani Radhakrishnan"

This review highlights recent advancements in the synthesis, processing, properties, and applications of 2D-material integrated hydrogels, with a focus on their performance in bone-related applications. Various synthesis methods and types of 2D nanomaterials, including graphene, graphene oxide, transition metal dichalcogenides, black phosphorus, and MXene are discussed, along with strategies for their incorporation into hydrogel matrices. These composite hydrogels exhibit tunable mechanical properties, high surface area, strong near-infrared (NIR) photon absorption and controlled release capabilities, making them suitable for a range of regeneration and therapeutic applications.

View Article and Find Full Text PDF
Article Synopsis
  • - Eczema (atopic dermatitis) is a skin condition with causes linked to genetics, immune issues, and environmental factors, making skin barrier dysfunction a key problem.
  • - Current treatments primarily involve emollients and topical medications like corticosteroids; the review highlights new advancements in using plant-based topical applications and their effectiveness.
  • - Studies show that herbal treatments improve symptoms of eczema, decrease inflammation markers, and may reduce side effects associated with conventional treatments by using innovative delivery systems like nanocarriers.
View Article and Find Full Text PDF

Collagen occurs in nature with a dedicated triple helix structure and is the most preferred biomaterial in commercialized medical products. However, concerns on purity, disease transmission, and the reproducibility of animal derived collagen restrict its applications and warrants alternate recombinant sources. The expression of recombinant collagen in different prokaryotic and eukaryotic hosts has been reported with varying degrees of success, however, it is vital to elucidate the structural and biological characteristics of natural collagen.

View Article and Find Full Text PDF

Genetic code expansion (GCE) enables directed incorporation of noncoded amino acids (NCAAs) and unnatural amino acids (UNAAs) into the active core that confers dedicated structure and function to engineered proteins. Many protein biomaterials are tandem repeats that intrinsically include NCAAs generated through post-translational modifications (PTMs) to execute assigned functions. Conventional genetic engineering approaches using prokaryotic systems have limited ability to biosynthesize functionally active biomaterials with NCAAs/UNAAs.

View Article and Find Full Text PDF

The healing physiology of bone repair and remodeling that occurs after normal fracture is well orchestrated. However, it fails in complex clinical conditions and hence requires augmentation by grafts. In this study, composite nanohydroxyapatite (nHA), poly(hydroxybutyrate) (PHB) and poly(ɛ-caprolactone) (PCL) constituted microspheres sintered three-dimensional scaffold were evaluated in rabbit ulnar segmental defect.

View Article and Find Full Text PDF

Reconstruction of peripheral nervous tissue remains challenging in critical-sized defects due to the lack of Büngner bands from the proximal to the distal nerve ends. Conventional nerve guides fail to bridge the large-sized defect owing to the formation of a thin fibrin cable. Hence, in the present study, an attempt was made to reverse engineer the intricate epi-, peri- and endo-neurial tissues using Fused Deposition Modeling based 3D printing.

View Article and Find Full Text PDF
Article Synopsis
  • Heart failure, often resulting from myocardial infarction (MI), significantly contributes to mortality rates, and mesenchymal stem cells (MSCs) show promise for heart regeneration due to their ability to secrete beneficial cytokines and growth factors.
  • Challenges such as low cell retention, high shear stress, and immune rejection limit the effectiveness of MSC therapies, highlighting the need for improved delivery methods.
  • This study introduces an injectable alginate-based hydrogel that delivers 5-Azacytidine (5-Aza) with MSCs, resulting in enhanced cell retention, improved cardiac function, and successful myocardial regeneration in a rat model, supported by promising in vitro results.
View Article and Find Full Text PDF

Successful translation of potential cancer chemotherapeutic drugs to the clinic depends on sufficient predictability of response in the human system through in vitro simulations. High expenditure and longer duration in preclinical and clinical research urge the enhancement of effective in vitro drug screening. 3D models emulate cell morphology, cell-cell and cell-matrix interactions and are physiologically more relevant for predicting drug responses for complex heterogenic cancers, widely replacing conventional cultures.

View Article and Find Full Text PDF

Fabricating nanofibrous scaffolds with robust blood compatibility remains an unmet challenge for cardiovascular applications since anti-thrombogenic surface coatings did not withstand physiological shear force. Hence, the present study envisages the influence of smooth and porous topographies of poly(lactic acid) (PLA) nanofibers on hemocompatibility as it could offer time-independent blood compatibility. Further, recent studies have evolved to integrate various contrasting agents for augmenting the prognostic properties of tissue engineered scaffolds; an attempt was also made to synthesize Curcumin-superparamagnetic iron oxide nanoparticle complex (Cur-SPION) as a contrasting agent and impregnated into PLA nanofibers for evaluating the blood compatibility.

View Article and Find Full Text PDF

Fabrication of anisotropic osteochondral-mimetic scaffold with mineralized subchondral zone and gradient interface remains challenging. We have developed an injectable semi-interpenetrating network hydrogel construct with chondroitin sulfate nanoparticles (ChS-NPs) and nanohydroxyapatite (nHA) (∼30-90 nm) in chondral and subchondral hydrogel zones respectively. Mineralized subchondral hydrogel exhibited significantly higher osteoblast proliferation and alkaline phosphatase activity (p < 0.

View Article and Find Full Text PDF

Precluding the progression of metastasis with early diagnosis of triple-negative breast cancer remains challenging due to lack of targeting specificity with poor diagnostic potential. Herein, an amphipathic chitosan-based targeted nanomicellar theranostics (30-45 nm) comprising doxorubicin-superparamagnetic iron oxide nanoparticles complexes (89.23%) with lower critical micelle concentration (0.

View Article and Find Full Text PDF

Articular hyaline cartilage regeneration remains challenging due to its less intrinsic reparability. The study develops injectable biphasic semi-interpenetrating polymer networks (SIPN) hydrogel impregnated with chondroitin sulfate (ChS) nanoparticles for functional cartilage restoration. ChS loaded zein nanoparticles (∼150nm) prepared by polyelectrolyte-protein complexation were interspersed into injectable SIPNs developed by blending alginate with poly(vinyl alcohol) and calcium crosslinking.

View Article and Find Full Text PDF

Biomechanical performance of functional cartilage is executed by the exclusive anisotropic composition and spatially varying intricate architecture in articulating ends of diarthrodial joint. Osteochondral tissue constituting the articulating ends comprise superfical soft cartilage over hard subchondral bone sandwiching interfacial soft-hard tissue. The shock-absorbent, lubricating property of cartilage and mechanical stability of subchondral bone regions are rendered by extended chemical structure of glycosaminoglycans and mineral deposition, respectively.

View Article and Find Full Text PDF

Matured Schwann cells play a vital role in promoting regeneration and restoration of functional peripheral nervous tissue. In the present study, two dimensional film, three dimensional random and longitudinally aligned electrospun fibers of poly(lactide-co-glycolide) were used to evaluate the effect of topography on expressions of myelin related genes. The aligned nanofibrous scaffold demonstrated significant increase in Schwann cell adhesion using after 3, 6 and 12 hours of culture compared to the film and random fibers.

View Article and Find Full Text PDF

Tissue engineering promises to be an effective strategy that can overcome the lacuna existing in the current pharmacological and interventional therapies and heart transplantation. Heart failure continues to be a major contributor to the morbidity and mortality across the globe. This may be attributed to the limited regeneration capacity after the adult cardiomyocytes are terminally differentiated or injured.

View Article and Find Full Text PDF

This research analyzed the major chemical components and multiple antioxidant activities present in the fresh juice of eight vegetables, and studied their influence on starch induced postprandial glycemia in rats. A SDS-PAGE based protein fingerprint of each vegetable juice was also prepared. The yields of juice, chemical components like total proteins, total polyphenols, total flavonoids, total anthocyanins and free radicals like the ABTS˙(+) cation, DPPH, H(2)O(2), scavenging activities and reducing properties for NBT and FeCl(3) showed wide variations.

View Article and Find Full Text PDF