Cheese whey is a dairy industry by-product responsible for serious environmental problems. Its fermentation would allow reducing its environmental impact and producing, at the same time, high-value products, hence ensuring cleaner production. Batch fermentations of cheese whey permeate, either as such or 1.
View Article and Find Full Text PDFThe aim of our study was to select the optimal operating conditions to permeabilize Kluyveromyces lactis cells using ethanol as a solvent as an alternative to cell disruption and extraction. Cell permeabilization was carried out by a non-mechanical method consisting of chemical treatment with ethanol, and the results were expressed as β-galactosidase activity. Experiments were conducted under different conditions of ethanol concentration, treatment time and temperature according to a central composite rotatable design (CCRD), and the collected results were then worked out by response surface methodology (RSM).
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
October 2009
Xylose reductase (XR) from Debaryomyces hansenii was extracted by partitioning in aqueous two-phase systems (ATPS) composed of polyethylene glycol (PEG) 4000 in the presence of different salts, specifically sodium sulfate, lithium sulfate and potassium phosphate. Batch extractions were carried out under different conditions of temperature (25-45 degrees C) and tie-line length (TLL) for each system, according to a central composite design face-centered of 36 tests, and the response surface methodology was used to evaluate the results. Quadratic polynomial models were adjusted to the data to predict the behavior of four responses, namely the XR partition coefficient (K(XR)), the selectivity (S), the purification factor (PF(T)) and the activity yield (Y(T)) in the top phase.
View Article and Find Full Text PDFTo develop a new enzymatic xylose-to-xylitol conversion, deeper knowledge on the regulation of xylose reductase (XR) is needed. To this purpose, a new strain of Debaryomyces hansenii (UFV-170), which proved a promising xylitol producer, was cultivated in semi-synthetic media containing different carbon sources, specifically three aldo-hexoses (D-glucose, D-galactose and D-mannose), a keto-hexose (D-fructose), a keto-pentose (D-xylose), three aldo-pentoses (D-arabinose, L-arabinose and D-ribose), three disaccharides (maltose, lactose and sucrose) and a pentitol (xylitol). The best substrate was lactose on which cell concentration reached about 20 g l(-1) dry weight (DW), while the highest specific growth rates (0.
View Article and Find Full Text PDFJ Ind Microbiol Biotechnol
February 2009
Xylose reductase (XR) is the enzyme that catalyzes the first step of xylose metabolism. Although XRs from various yeasts have been characterized, little is known about this enzyme in Debaryomyces hansenii. In the present study, response surface analysis was used to determine the optimal conditions for D.
View Article and Find Full Text PDF