The preferential oxidation of CO (CO-PROX) is promoted at the interface between CuO and CeO. For this reason, different synthesis methods of CuO/CeO catalysts have been investigated in order to maximize this interface. However, the understanding of the effect of CuO/CeO catalysts preparation method on the redox properties and CO-PROX reaction performance is still unclear.
View Article and Find Full Text PDFExperimentally, steric and inductive effects have been suggested as key parameters in the adsorption and reactivity of alcohols on transition-metal (TM) surfaces, however, our atomistic understanding of the behavior of alcohols in catalysis is far from satisfactory, in particular, due to the role of hydroxy groups in the adsorption properties of C3 alcohols on TM surfaces. In this study, we investigated those effects through ab initio calculations based on density functional theory employing a semilocal exchange-correlation functional within van der Waals corrections (the D3 framework) for the adsorption of C3 alcohols with different numbers and positions of OH groups, namely, propane, 1-propanol, 2-propanol, 1,2-propanediol, 1,3-propanediol and glycerol, on the compact Ni(111), Pd(111) and Pt(111) surfaces. As expected, we found that the adsorption energy is affected by the number of hydroxy groups with similar values for each pair of regioisomers, which clearly indicates the effect of the number of OH groups.
View Article and Find Full Text PDFAmong the several classes of chemical reactions, the green oxidation of organic compounds has emerged as an important topic in nanocatalysis. Nonetheless, examples of truly green oxidations remain scarce due to the low activity and selectivity of reported catalysts. In this paper, we present an approach based on the optimization of both the support material and the active phase to achieve superior catalytic performances towards green oxidations.
View Article and Find Full Text PDFThe glycerol electrooxidation reaction (GEOR) has attracted huge interest in the last decade due to the very low price and availability of this polyol. In this work, we studied the GEOR on Pt(111) electrodes by introducing different densities of random defects. Our results showed that the generation of defects on Pt(111) slightly modified the GEOR onset potential, however it generates changes in the voltammetric oxidation charges and also in the relative production of CO to carbonyl containing compounds, C[double bond, length as m-dash]O.
View Article and Find Full Text PDFIn this report we present new insights into the formation mechanism of Ag, Au and AgAu nanoparticles with alcohols, aldehydes and ketones in alkaline medium at room temperature. We selected methanol, ethanol, glycerol, formaldehyde, acetaldehyde and acetone to demonstrate their capability of reducing gold and silver ions under the above-mentioned conditions. We showed that the particles are also formed with potassium tert-butoxide in the absence of hydroxides.
View Article and Find Full Text PDFGlycerol is at present abundantly co-produced in the biodiesel fabrication and can be used as fuel in Direct Glycerol Fuel Cells (DGFC) for cogeneration of electricity, value-added chemicals and heat. With this motivation, in the present work, we investigated at a fundamental level the oxidation of glycerol over glassy carbon (GC) supported Au nanoparticles in alkaline medium using cyclic voltammetry. By controlling the Au deposition time, we varied the GC supported Au coverage from 0.
View Article and Find Full Text PDFThe properties of the interfacial water monolayer on MgO(001) during growth of multilayer ice and, in particular, the dewetting of crystalline ice on MgO(001) are revealed by vibrational sum frequency generation and infrared reflection absorption spectroscopy.
View Article and Find Full Text PDFEthanol in an acidic solution-Pt(110) interface was studied by SFG spectroscopy (between 1820 and 2325 cm(-1)) to explore primarily the effects of the alcohol concentration. Stretching bands of H-Pt (ca. 1970 or 2050 cm(-1)) and CO (ca.
View Article and Find Full Text PDF