Publications by authors named "Janae Sweeney"

Epithelial-mesenchymal transition (EMT), a key event in cancer metastasis, allows polarized epithelial cells to assume mesenchymal morphologies, enhancing invasiveness and migration, and can be induced by reactive oxygen species (ROS). Val16A (Ala) SOD2 polymorphism has been associated with increased prostate cancer (PCa) risk. We hypothesized that SOD2 Ala single nucleotide polymorphism (SNP) may promote EMT.

View Article and Find Full Text PDF

Creosote bush (; LT) leaves extracts were tested for their potential efficacy to mitigate cellular oxidative stress on human SH-SY5Y cells. Here, the differential nuclear staining assay, a bioimager system, and flow cytometric protocols, concurrently with several specific chemicals, were used to measure the percentage of cell viability and several facets implicated in the cytoprotective mechanism of LT extracts. Initially, three LT extracts, prepared with different solvents, ethanol, ethanol:water (e/w), and water, were tested for their capacity to rescue the viability of cells undergoing aggressive HO-induced oxidative stress.

View Article and Find Full Text PDF

Triple-Negative Breast Cancers (TNBCs) are the most difficult to treat subtype of breast cancer and are often associated with high nuclear expression of Snail and Cathepsin L (Cat L) protease. We have previously shown that Snail can increase Cat L expression/activity in prostate and breast cancer cells. This study investigated the role of CUX1 (a downstream substrate of Cat L) in TNBC.

View Article and Find Full Text PDF

Typically the normal epithelial cells are a single layer, held tightly by adherent proteins that prevent the mobilization of the cells from the monolayer sheet. During prostate cancer progression, the epithelial cells can undergo epithelial-mesenchymal transition or EMT, characterized by morphological changes in their phenotype from cuboidal to spindle-shaped. This is associated with biochemical changes in which epithelial cell markers such as E-cadherin and occludins are down-regulated, which leads to loss of cell-cell adhesion, while mesenchymal markers such as vimentin and N-cadherin are up-regulated, thereby allowing the cells to migrate or metastasize to different organs.

View Article and Find Full Text PDF