The use of synthetic antigen-presenting cells to activate and expand engineered T cells for the treatment of cancers typically results in therapies that are suboptimal in effectiveness and durability. Here we describe a high-throughput microfluidic system for the fabrication of synthetic cells mimicking the viscoelastic and T-cell-activation properties of antigen-presenting cells. Compared with rigid or elastic microspheres, the synthetic viscoelastic T-cell-activating cells (SynVACs) led to substantial enhancements in the expansion of human CD8 T cells and to the suppression of the formation of regulatory T cells.
View Article and Find Full Text PDFThe durability of a protective immune response generated by a vaccine depends on its ability to induce long-term T cell immunity, which tends to decline in aging populations. The longest protection appears to arise from T memory stem cells (TMSCs) that confer high expandability and effector functions when challenged. Here we engineered artificial antigen presenting cells (aAPC) with optimized size, stiffness and activation signals to induce human and mouse CD8 TMSCs .
View Article and Find Full Text PDFObjective: Developmental and epileptic encephalopathies (DEEs) are a group of severe, early-onset epilepsies characterised by refractory seizures, developmental delay, or regression and generally poor prognosis. DEE are now known to have an identifiable molecular genetic basis and are usually examined using a gene panel. However, for many patients, the genetic cause has still not been identified.
View Article and Find Full Text PDFElevated impulsivity is a key component of attention-deficit hyperactivity disorder (ADHD), bipolar disorder and juvenile myoclonic epilepsy (JME). We performed a genome-wide association, colocalization, polygenic risk score, and pathway analysis of impulsivity in JME (n = 381). Results were followed up with functional characterisation using a drosophila model.
View Article and Find Full Text PDFReliable definitions, classifications and prognostic models are the cornerstones of stratified medicine, but none of the current classifications systems in epilepsy address prognostic or outcome issues. Although heterogeneity is widely acknowledged within epilepsy syndromes, the significance of variation in electroclinical features, comorbidities and treatment response, as they relate to diagnostic and prognostic purposes, has not been explored. In this paper, we aim to provide an evidence-based definition of juvenile myoclonic epilepsy showing that with a predefined and limited set of mandatory features, variation in juvenile myoclonic epilepsy phenotype can be exploited for prognostic purposes.
View Article and Find Full Text PDFDeveloping scalable electrical stimulating platforms for cell and tissue engineering applications is limited by external power source dependency, wetting resistance, microscale size requirements, and suitable flexibility. Here, a versatile and scalable platform is developed to enable tunable electrical stimulation for biological applications by harnessing the giant magnetoelastic effect in soft systems, converting gentle air pressure (100-400 kPa) to yield a current of up to 10.5 mA and a voltage of 9.
View Article and Find Full Text PDFCell clusters that collectively migrate from primary tumors appear to be far more potent in forming distant metastases than single cancer cells. A better understanding of the collective cell migration phenomenon and the involvement of various cell types during this process is needed. Here, an in vitro platform based on inverted-pyramidal microwells to follow and quantify the collective migration of hundreds of tumor cell clusters at once is developed.
View Article and Find Full Text PDFPeriodontal diseases are caused by microbial infection and the recruitment of destructive immune cells. Current therapies mainly deal with bacteria elimination, but the regeneration of periodontal tissues remains a challenge. Here we developed a modular microneedle (MN) patch that delivered both antibiotic and cytokines into the local gingival tissue to achieve immunomodulation and tissue regeneration.
View Article and Find Full Text PDFImmune cells have emerged as powerful regulators of regenerative as well as pathological processes. The vast majority of regenerative immunoengineering efforts have focused on macrophages; however, growing evidence suggests that other cells of both the innate and adaptive immune system are as important for successful revascularization and tissue repair. Moreover, spatiotemporal regulation of immune cells and their signaling have a significant impact on the regeneration speed and the extent of functional recovery.
View Article and Find Full Text PDFPeriodontal disease begins as an inflammatory response to a bacterial biofilm deposited around the teeth, which over time leads to the destruction of tooth-supporting structures and consequently tooth loss. Conventional treatment strategies show limited efficacy in promoting regeneration of damaged periodontal tissues. Here, a delivery platform is developed for small extracellular vesicles (sEVs) derived from gingival mesenchymal stem cells (GMSCs) to treat periodontitis.
View Article and Find Full Text PDFJuvenile myoclonic epilepsy (JME) is a common idiopathic generalised epilepsy with variable seizure prognosis and sex differences in disease presentation. Here, we investigate the combined epidemiology of sex, seizure types and precipitants, and their influence on prognosis in JME, through cross-sectional data collected by The Biology of Juvenile Myoclonic Epilepsy (BIOJUME) consortium. 765 individuals met strict inclusion criteria for JME (female:male, 1.
View Article and Find Full Text PDFInfection by SARS-CoV-2 virus often induces the dysregulation of immune responses, tissue damage, and blood clotting. Engineered biomaterials from the nano- to the macroscale can provide targeted drug delivery, controlled drug release, local immunomodulation, enhanced immunity, and other desirable functions to coordinate appropriate immune responses and to repair tissues. Based on the understanding of COVID-19 disease progression and immune responses to SARS-CoV-2, we discuss possible immunotherapeutic strategies and highlight biomaterial approaches from the perspectives of preventive immunization, therapeutic immunomodulation, and tissue healing and regeneration.
View Article and Find Full Text PDFObjective: Impulsivity is a multidimensional construct that can predispose to psychopathology. Meta-analysis demonstrates an association between response impulsivity and Juvenile Myoclonic Epilepsy (JME), a common genetic generalized epilepsy. Here, we test the hypotheses that trait impulsivity is (i) elevated in JME compared to controls; (ii) moderated by specific seizure characteristics; and (iii) associated with psychiatric adverse effects of antiepileptic drugs (AEDs).
View Article and Find Full Text PDFBackground: Adipose tissue-derived stromal cells (ADSCs) have great potential for cell-based therapies, including tissue engineering. However, various factors can influence the characteristics of isolated ADSCs.
Methods: We studied the influence of the harvesting site, i.
Micromachines (Basel)
February 2020
Here, we developed a combinatorial delivery platform for chronic wound healing applications. A microfluidic system was utilized to form a series of biopolymer-based microparticles with enhanced affinity to encapsulate and deliver vascular endothelial growth factor (VEGF). Presence of heparin into the structure can significantly increase the encapsulation efficiency up to 95% and lower the release rate of encapsulated VEGF.
View Article and Find Full Text PDFStem cells can be defined as units of biological organization that are responsible for the development and the regeneration of organ and tissue systems. They are able to renew their populations and to differentiate into multiple cell lineages. Therefore, these cells have great potential in advanced tissue engineering and cell therapies.
View Article and Find Full Text PDFRecently, milk-derived proteins have attracted attention for applications in the biomedical field such as tissue regeneration. Whey protein isolate (WPI), especially its main component β-lactoglobulin, can modulate immunity and acts as an antioxidant, antitumor, antiviral, and antibacterial agent. There are very few reports of the application of WPI in tissue engineering, especially in bone tissue engineering.
View Article and Find Full Text PDFStandardized terminology for computer-based assessment and reporting of EEG has been previously developed in Europe. The International Federation of Clinical Neurophysiology established a taskforce in 2013 to develop this further, and to reach international consensus. This work resulted in the second, revised version of SCORE (Standardized Computer-based Organized Reporting of EEG), which is presented in this paper.
View Article and Find Full Text PDFJ Biomed Mater Res A
November 2017
Long-term performance of implanted cardiovascular grafts can be ensured if living endothelium overgrows their surface. Surface modifications to implants are therefore being sought that can encourage endothelialization while preventing thrombus formation until the natural endothelium is formed. In the present study, heparin was covalently attached to a fibrin mesh grown from a polyvinyl chloride (PVC) substrate surface by the catalytic action of surface immobilized thrombin on a fibrinogen solution.
View Article and Find Full Text PDFWe describe the production of a highly-active mutant VEGF variant, α2-PI1-8-VEGF121, which contains a substrate sequence for factor XIIIa at the aminoterminus designed for incorporation into a fibrin gel. The α2-PI1-8-VEGF121 gene was synthesized, cloned into a pET-32a(+) vector and expressed in Escherichia coli Origami B (DE3) host cells. To increase the protein folding and the solubility, the resulting thioredoxin-α2-PI1-8-VEGF121 fusion protein was co-expressed with recombinant molecular chaperones GroES/EL encoded by independent plasmid pGro7.
View Article and Find Full Text PDFAcademic self-concept could significantly affect academic achievement and self-confidence in children with epilepsy. However, limited attention has been devoted to determining factors influencing academic self-concept of children with epilepsy. We aimed to analyze potentially significant variables (gender, frequency of seizures, duration of epilepsy, intellectual disability, learning disability and attention deficit hyperactivity disorder) in relation to academic self-concept in children with epilepsy and to additional domains of their quality of life.
View Article and Find Full Text PDFObjectives: Academic achievement in children with epilepsy is a highly studied topic with many important implications. However, only little attention has been devoted to academic self-concept of such children and the relation of academic self-concept to their quality of life. We aimed to examine academic self-concept in children with epilepsy, to assess its relationship to academic achievement and to determine possible correlations between academic self-concept and quality of life.
View Article and Find Full Text PDFQuality of life (QoL) is a crucial factor in the treatment of individuals suffering from epilepsy. We aimed to adapt the children's version of the CHEQOL-25 questionnaire to allow the QoL measurement in children suffering from epilepsy in the Czech Republic. The adaptation was conducted on a group of 250 children and adolescents aged 8-15years.
View Article and Find Full Text PDF