With over 55 million people globally affected by dementia and nearly 10 million new cases reported annually, Alzheimer's disease is a prevalent and challenging neurodegenerative disorder. Despite significant advancements in machine learning techniques for Alzheimer's disease detection, the widespread adoption of deep learning models raises concerns about their explainability. The lack of explainability in deep learning models for online handwriting analysis is a critical gap in the literature in the context of Alzheimer's disease detection.
View Article and Find Full Text PDF