Bacteriophages are potent therapeutics against biohazardous bacteria, which rapidly develop multidrug resistance. However, routine administration of phage therapy is hampered by a lack of rapid production, safe bioengineering, and detailed characterization of phages. Thus, we demonstrate a comprehensive cell-free platform for personalized production, transient engineering, and proteomic characterization of a broad spectrum of phages.
View Article and Find Full Text PDFDespite numerous advances in personalized phage therapy, smooth logistics are challenging, particularly for multidrug-resistant Gram-negative bacterial infections requiring high numbers of specific lytic phages. We conducted this study to pave the way for efficient logistics for critically ill patients by (1) closely examining and improving a current pipeline under realistic conditions, (2) offering guidelines for each step, leading to safe and high-quality phage supplies, and (3) providing a tool to evaluate the pipeline's efficiency. Due to varying stipulations for quality and safety in different countries, we focused the pipeline on all steps up to a required phage product by a cell-free extract system.
View Article and Find Full Text PDFBackground: Multidrug-resistant Klebsiella pneumoniae spp. (kp) are emerging agents of severe infections of the respiratory, urinary tract and wounds that can progress to fatal septicemia. The use of bacteriophages is currently being considered as an effective alternative or adjuvant to antibiotic therapy.
View Article and Find Full Text PDF