Publications by authors named "Jana Sinkorova"

Introduction: Porcine reproductive and respiratory syndrome virus (PRRSV) emerged about 30 years ago and continues to cause major economic losses in the pork industry. The lack of effective modified live vaccines (MLV) allows the pandemic to continue.

Background And Objective: We have previously shown that wild strains of PRRSV affect the nascent T cell repertoire in the thymus, deplete T cell clones recognizing viral epitopes essential for neutralization, while triggering a chronic, robust, but ineffective antibody response.

View Article and Find Full Text PDF

PRRSV is capable of evading the effective immune response, thus persisting in piglets and throughout the swine herd. We show here that PRRSV invades the thymus and causes depletion of T-cell precursors and alteration of the TCR repertoire. Developing thymocytes are affected during negative selection when they transit from the triple-negative to triple-positive stages at the corticomedullary junction just before entering the medulla.

View Article and Find Full Text PDF

In pigs (Sus scrofa), the initial immunoglobulin rearrangement of the κ light chain is replaced by λ before the heavy chains rearrange, and the light chains may rearrange even later. This study investigates whether these developmental differences are reflected in the usage of IGK and IGL genes. We found large differences between peripheral B cells and those developing in the bone marrow, and between B cells in germ-free piglets and conventional pigs.

View Article and Find Full Text PDF

Studies in humans and mice indicate the critical role of the surrogate light chain in the selection of the productive immunoglobulin repertoire during B cell development. However, subsequent studies using mutant mice have also demonstrated that alternative pathways are allowed. Our recent investigation has shown that some species, such as pig, physiologically use preferential rearrangement of authentic light chains, and become independent of surrogate light chains.

View Article and Find Full Text PDF

Swine use a reverse order of immunoglobulin chain rearrangement compared to humans and mice, and this altered and modified order should have measurable consequences. Here we perform new and defining experiments with developing and mature B cells, characterizing the B cell populations that do not exist in other species. First, we have finally confirmed that light chains κ and λ are rearranged and expressed on the surface before any heavy chain rearrangements using western-blot.

View Article and Find Full Text PDF

Developmental pathways for B cell lymphogenesis are sufficiently known only in mice and humans. However, both of these species rearrange immunoglobulin heavy chains (IgH) before light chains (IgL) while IgL precedes IgH rearrangement in swine. We demonstrate here that this reversed order of rearrangements have some concealed consequences: (1) we confirmed that although IgLκ rearrangement is initial, most IgLλ B cells are generated earlier and before IgH rearrangements, while most IgLκ B cells later and after IgH rearrangements, (2) the second IgLκ rearrangement can occur after IgLλ rearrangement, (3) early formed B cells bear only single in-frame IgH rearrangements, (4) many IgLκ B cells carry IgLλ rearrangements that can be productive and occurring on both alleles in one cell, and (5) although VpreB and λ5 genes are present in swine, they are preferentially expressed in non-B cells.

View Article and Find Full Text PDF

Porcine thymus contains three independent populations of cells that have rearranged immunoglobulin heavy chain VDJ genes. The first population can be found exclusively in medulla and it consists of existing mature B cells and plasma cells. The second consists of developing B cells characterized by the presence of selected VDJ rearrangement, similar to B cell lymphogenesis in the bone marrow.

View Article and Find Full Text PDF

The current mammalian paradigm states that 1) rearrangements in the IgH locus precede those in IgL loci, 2) IgLλ genes rearrange only when IgLκ genes are consumed, and 3) the surrogate L chain is necessary for selection of productive IgH gene rearrangements. We show in swine that IgL rearrangements precede IgH gene rearrangements, resulting in the expression of naked IgL on a surface of precursor B cells. Findings also suggest that there is no dependency on the surrogate L chain, and thus the authentic IgL proteins may be used for selection of the IgH repertoire.

View Article and Find Full Text PDF

Porcine ileum is populated with a high proportion of B cells but previous studies have shown that they are not developed there. While B cells prevail in the ileum even in germ-free animals, microbial colonization is a major factor that causes even a greater prevalence of B cells in the ileum and further differential representation of lymphoid cells throughout small intestine. Analysis of lymphoid subpopulations showed that the effector cells appear only after colonization.

View Article and Find Full Text PDF

A course and a site of B cell development in swine are not firmly known. In this study, we show that B cell lymphogenesis is located in the bone marrow (BM). According to expression of MHC class II (MHC-II), CD2, CD21, CD25, CD45RC, CD172a, swine workshop cluster (identification number) (SWC) 7, and μHC, porcine BM cells were resolved into seven subsets representing sequential stages of development.

View Article and Find Full Text PDF

Lymphocyte subsets isolated from germ-free piglets experimentally infected with swine influenza virus (SIV), porcine reproductive and respiratory syndrome virus (PRRSV) or porcine circovirus type 2 (PCV2) were studied and the profile of these subsets among these three infections was monitored. Germ-free piglets were used since their response could be directly correlated to the viral infection. Because SIV infections are resolved even by colostrum-deprived neonates whereas PRRSV and PCV2 infections are not, SIV was used as a benchmark for an effectively resolved viral infection.

View Article and Find Full Text PDF

Monoclonal antibodies IAH-CC51, BB6-11C9.6 and B-Ly4 are routinely used to detect CD21 orthologue on the surface of porcine B lymphocytes. Cross-reactive studies show that IAH-CC51 and B-Ly4 recognize only a portion of B cells that are positive for pan-specific BB6-11C9.

View Article and Find Full Text PDF

Based on studies of sheep, ileal Peyer's patches (IPP) have been regarded as a type of primary lymphoid tissue similar to the bursa of Fabricius in chicken. Because bursectomy results in B cell deficiency, we wondered whether resection of the IPP of piglets would have a similar effect. Comparison of IPP-resected, surgical shams and untreated germ-free piglets, all of which were later colonized with a defined commensal flora, demonstrated that resection of the IPP did not alter the level and phenotype of B and T cells in lymphoid tissues and the blood 10 wk after surgery.

View Article and Find Full Text PDF

Developmental pathways of gammadelta T cells are still unknown, largely because of the absence of recognized lineage-specific surface markers other than the TCR. We have shown that porcine gammadelta thymocytes can be divided into 12 subsets of the following two major groups: 1) CD4(-) gammadelta thymocytes that can be further subdivided according to their CD2/CD8alphaalpha phenotype, and 2) CD4(+) gammadelta thymocytes that are always CD1(+)CD2(+)CD8alphabeta(+) and have no counterpart in the periphery. In this study, we have analyzed gammadelta thymocyte subsets with respect to behavior during cultivation, cell cycle status, and lymphocyte-specific transcripts.

View Article and Find Full Text PDF

The developing porcine fetus offers an excellent opportunity for the study of lymphocyte development. Studies on B cell, alphabeta T cells and gammadelta T cells in the last decade have expanded our knowledge of lymphocyte development in pigs. These studies have revealed several interesting differences between swine, mice and humans.

View Article and Find Full Text PDF

In this report, we describe 12 subpopulations of porcine gammadelta thymocytes based on their expression of CD1, CD2, CD4, CD8- isoforms and CD45RC. Our data suggest that gammadelta thymocytes can be divided into two major families: (a) one large family of CD4-gammadelta thymocytes that could be further subdivided according to the CD2/CD8alphaalpha phenotype and (b) a small family of CD4+ gammadelta thymocytes bearing CD8alphabeta and possessing certain unusual features in comparison with other gammadelta thymocytes. Maturation of gammadelta thymocytes within the CD4- family begins with proliferation of the CD2+ CD8- CD1+ CD45RC- gammadelta common precursor.

View Article and Find Full Text PDF

B cell lymphogenesis in mammals occurs in various tissues during development but it is generally accepted that it operates by the same mechanism in all tissues. We show that in swine, the frequency of in-frame (IF) VDJ rearrangements differs among yolk sac, fetal liver, spleen, early thymus, bone marrow, and late thymus. All VDJ rearrangements recovered and analyzed on the 20th day of gestation (DG20) from the yolk sac were 100% IF.

View Article and Find Full Text PDF

Hematopoietic activity of the swine has been documented in three phases during fetal ontogeny. The hematopoietic system develops first in the yolk sac, then in fetal liver and finally in the bone marrow. Using flow cytometry (FCM) and molecular biological techniques we show that B-cell lymphogenesis and the appearance of B cells follows a pattern.

View Article and Find Full Text PDF