Publications by authors named "Jana Oliveriusova"

Cystathionine beta-synthase (CBS) is a pyridoxal-5'-dependent enzyme that catalyzes the condensation of homocysteine and serine to form cystathionine. Human CBS is unique in that heme is also required for maximal activity, although the function of heme in this enzyme is presently unclear. The study presented herein reveals that the heme of human CBS undergoes a coordination change upon reduction at elevated temperatures.

View Article and Find Full Text PDF

Cystathionine beta-synthase (CBS) deficiency is the most common cause of homocystinuria. More than 130 pathogenic mutations, mostly in the Caucasian populations, have been described. Recently, our group reported a mutation analysis of Japanese homocystinuric patients.

View Article and Find Full Text PDF
Article Synopsis
  • Human cystathionine beta-synthase (CBS) is a specialized enzyme that relies on both pyridoxal-5'-phosphate and heme for its activity, but the specific role of heme has not been fully understood.
  • The study found that the core structure of CBS is responsible for its activity's pH dependence, revealing that changes in pH do not significantly alter the heme's coordination sphere across a pH range of 6 to 9.
  • Instead, pH influences the balance between ferric (Fe(III)) and ferrous (Fe(II)) states of the heme, suggesting that the heme's function relates more to regulating CBS activity via its iron oxidation state influenced by pH
View Article and Find Full Text PDF

Cystathionine beta-synthase (CBS) is a unique heme-containing enzyme that catalyses a pyridoxal 5'-phosphate (PLP)-dependent condensation of serine and homocysteine to give cystathionine. Deficiency of CBS leads to homocystinuria, an inherited disease of sulfur amino acid metabolism characterised by increased levels of homocysteine and methionine and decreased levels of cysteine. Presently, more than 100 CBS mutations have been described which lead to homocystinuria with different degrees of severity in the patients.

View Article and Find Full Text PDF

Cystathionine beta-synthase is a tetrameric hemeprotein that catalyzes the pyridoxal 5'-phosphate-dependent condensation of serine and homocysteine to cystathionine. We have used deletion mutagenesis of both the N and C termini to investigate the functional organization of the catalytic and regulatory regions of this enzyme. Western blot analysis of these mutants expressed in Escherichia coli indicated that residues 497-543 are involved in tetramer formation.

View Article and Find Full Text PDF

Abnormal elevation of plasma methionine may result from several different genetic abnormalities, including deficiency of cystathionine beta-synthase (CBS) or of the isoenzymes of methionine adenosyltransferase (MAT) I and III expressed solely in nonfetal liver (MAT I/III deficiency). Classically, these conditions have been distinguished most readily by the presence or absence, respectively, of elevated plasma free homocystine, detected by amino acid chromatography in the former condition, but absent in the latter. During the present work, we have assayed methionine, S-adenosylmethionine, S-adenosylhomocysteine, total homocysteine (tHcy), cystathionine, N-methylglycine (sarcosine), and total cysteine (tCys) in groups of both MAT I/III- and CBS-deficient patients to provide more evidence as to their metabolite patterns.

View Article and Find Full Text PDF

Cystathionine beta-synthase (CBS) deficiency is the most common cause of homocystinuria. It is inherited as an autosomal recessive trait and common clinical features are: dislocation of the optic lens, osteoporosis, mental retardation, and thromboembolism. We determined the molecular basis of CBS deficiency in 36 Australian patients from 28 unrelated families, using direct sequencing of the entire coding region of the CBS gene.

View Article and Find Full Text PDF

Cystathionine beta-synthase (CBS) is a crucial regulator of plasma levels of the thrombogenic amino acid homocysteine (Hcy). Homocystinuria due to CBS deficiency confers a dramatically increased risk of thrombosis. Early diagnosis usually occurs after the observation of ectopia lentis, mental retardation, or characteristic skeletal abnormalities.

View Article and Find Full Text PDF