Publications by authors named "Jana L Heisler-White"

The flux of carbon dioxide (CO2) between terrestrial ecosystems and the atmosphere may ameliorate or exacerbate climate change, depending on the relative responses of ecosystem photosynthesis and respiration to warming temperatures, rising atmospheric CO2, and altered precipitation. The combined effect of these global change factors is especially uncertain because of their potential for interactions and indirectly mediated conditions such as soil moisture. Here, we present observations of CO2 fluxes from a multi-factor experiment in semi-arid grassland that suggests a potentially strong climate - carbon cycle feedback under combined elevated [CO2] and warming.

View Article and Find Full Text PDF

Predicting net C balance under future global change scenarios requires a comprehensive understanding of how ecosystem photosynthesis (gross primary production; GPP) and respiration (Re) respond to elevated atmospheric [CO(2)] and altered water availability. We measured net ecosystem exchange of CO(2) (NEE), GPP and Re under ambient and elevated [CO(2)] in a northern mixed-grass prairie (Wyoming, USA) during dry intervals and in response to simulated precipitation pulse events. Elevated [CO(2)] resulted in higher rates of both GPP and Re across the 2006 growing season, and the balance of these two fluxes (NEE) accounted for cumulative growing season C uptake (-14.

View Article and Find Full Text PDF

Water availability is the primary constraint to aboveground net primary productivity (ANPP) in many terrestrial biomes, and it is an ecosystem driver that will be strongly altered by future climate change. Global circulation models predict a shift in precipitation patterns to growing season rainfall events that are larger in size but fewer in number. This "repackaging" of rainfall into large events with long intervening dry intervals could be particularly important in semi-arid grasslands because it is in marked contrast to the frequent but small events that have historically defined this ecosystem.

View Article and Find Full Text PDF