Synthesis-induced defects in single-walled carbon nanotubes (SWCNTs) enable diverse catalytic reactions, but the nature of catalytic intermediates and how active species regeneration occurs are unclear. Using a quantum mechanics/molecular mechanics (QM/MM) hybrid methodology based on density functional theory (DFT) and a classical force-field, we explore the reactivity and electrochemical regeneration of a vacancy defect in a zigzag SWCNT. Our findings indicate that hydrolysis of the defect forms a ketone group on one carbon atom and C-H bonds on two adjacent carbons.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2023
Living bio-nano systems for artificial photosynthesis are of growing interest. Typically, these systems use photoinduced charge transfer to provide electrons for microbial metabolic processes, yielding a biosynthetic solar fuel. Here, we demonstrate an entirely different approach to constructing a living bio-nano system, in which electrogenic bacteria respire semiconductor nanoparticles to support nanoparticle photocatalysis.
View Article and Find Full Text PDFA photochemical system utilizing the semisynthetic biomolecular catalyst acetylated cobalt microperoxidase-11 (CoMP11-Ac) along with [Ru(bpy)] as a photosensitizer and ascorbic acid as an electron donor is shown to generate hydrogen from water in a visible light-driven reaction. The reductive quenching pathway facilitated by photoexcited [Ru(bpy)] overcomes the high overpotential observed for CoMP11-Ac in electrocatalysis, yielding turnover numbers ranging from 606 to 2390 (2 μM - 0.1 μM CoMP11-Ac).
View Article and Find Full Text PDFA photocatalytic hydrogen (H) production system is reported using glutathione (GSH)-capped CdSe QDs with a cobalt precatalyst, yielding 130 000 mol H per mol cobalt over 48 hours. Analysis of the reaction mixtures after catalysis indicates that the active catalyst is a labile complex of cobalt and GSH formed in situ.
View Article and Find Full Text PDF