The immune checkpoint ligand PD-L1 has emerged as a molecular target for skin cancer therapy and might also hold promise for preventive intervention targeting solar UV light-induced skin damage. In this study, we have explored the role of PD-L1 in acute keratinocytic photodamage testing the effects of small-molecule pharmacological inhibition. Epidermal PD-L1 upregulation in response to chronic photodamage was established using immunohistochemical and proteomic analyses of a human skin cohort, consistent with earlier observations that PD-L1 is upregulated in cutaneous squamous cell carcinoma.
View Article and Find Full Text PDFAn abundant body of scientific studies and regulatory guidelines substantiates antimicrobial efficacy of freshwater chlorination ensuring drinking water safety in large populations worldwide. In contrast to the purposeful use of chlorination ensuring antimicrobial safety of drinking water, only a limited body of research has addressed the molecular impact of chlorinated drinking water exposure on the gut microbiota. Here, for the first time, we have examined the differential effects of drinking water regimens stratified by chlorination agent [inorganic (HOCl) versus chloramine (TCIC)] on the C57BL/6J murine fecal microbiota.
View Article and Find Full Text PDFSince its initial discovery as a natural isotopologue of dihydrogen oxide ( H O), extensive research has focused on the biophysical, biochemical, and pharmacological effects of deuterated water ( H O [D O, also referred to as "heavy water"]). Using a panel of cultured human pancreatic ductal adenocarcinoma (PDAC) cells we have profiled (i) D O-induced phenotypic antiproliferative and apoptogenic effects, (ii) redox- and proteotoxicity-directed stress response gene expression, and (iii) phosphoprotein-signaling related to endoplasmic reticulum (ER) and MAP-kinase stress response pathways. Differential array analysis revealed early modulation of stress response gene expression in both BxPC-3 and PANC-1 PDAC cells elicited by D O (90%; ≤6 h; upregulated: HMOX1, NOS2, CYP2E1, CRYAB, DDIT3, NFKBIA, PTGS1, SOD2, PTGS2; downregulated: RUNX1, MYC, HSPA8, HSPA1A) confirmed by independent RT-qPCR analysis.
View Article and Find Full Text PDFCellular oxidative stress contributes to solar ultraviolet (UV) radiation-induced skin photoaging and photocarcinogenesis. Light-driven electron and energy transfer reactions involving non-DNA chromophores are a major source of reactive oxygen species (ROS) in skin, and the molecular identity of numerous endogenous chromophores acting as UV-photosensitizers has been explored. Methylglyoxal (MG), a glycolytic byproduct bearing a UV-active α-dicarbonyl-chromophore, is generated under metabolic conditions of increased glycolytic flux, associated with posttranslational protein adduction in human tissue.
View Article and Find Full Text PDFFreshwater sanitation and disinfection using a variety of chemical entities as chlorination agents is an essential public health intervention ensuring water safety for populations at a global scale. Recently, we have published our observation that the small molecule oxidant, innate immune factor and chlorination agent HOCl antagonize inflammation and photocarcinogenesis in murine skin exposed topically to environmentally relevant concentrations of HOCl. Chlorinated isocyanuric acid derivatives (including the chloramines trichloroisocyanuric acid [TCIC] and dichloroisocyanuric acid [DCIC]) are used worldwide as alternate chlorination agents serving as HOCl precursor and stabilizer compounds ensuring sustained release in aqueous environments including public water systems, recreational pools and residential hot tubs.
View Article and Find Full Text PDFA multitude of extrinsic environmental factors (referred to in their entirety as the 'skin exposome') impact structure and function of skin and its corresponding cellular components. The complex (i.e.
View Article and Find Full Text PDFMolecularly targeted therapeutics have revolutionized the treatment of BRAF -driven malignant melanoma, but the rapid development of resistance to BRAF kinase inhibitors (BRAFi) presents a significant obstacle. The use of clinical antimalarials for the investigational treatment of malignant melanoma has shown only moderate promise, attributed mostly to inhibition of lysosomal-autophagic adaptations of cancer cells, but identification of specific antimalarials displaying single-agent antimelanoma activity has remained elusive. Here, we have screened a focused library of clinically used artemisinin-combination therapeutic (ACT) antimalarials for the apoptotic elimination of cultured malignant melanoma cell lines, also examining feasibility of overcoming BRAFi-resistance comparing isogenic melanoma cells that differ only by NRAS mutational status (BRAFi-sensitive A375-BRAF /NRAS vs.
View Article and Find Full Text PDFJ Allergy Clin Immunol
September 2022
Background: The study of pathogenic mechanisms in adult asthma is often marred by a lack of precise information about the natural history of the disease. Children who have persistent wheezing (PW) during the first 6 years of life and whose symptoms start before age 3 years (PW) are much more likely to have wheezing illnesses due to rhinovirus (RV) in infancy and to have asthma into adult life than are those who do not have PW (PW).
Objective: Our aim was to determine whether nasal epithelial cells from PW asthmatic adults as compared with cells from PW asthmatic adults show distinct biomechanistic processes activated by RV exposure.
BRAF inhibitor (BRAFi) resistance compromises long-term survivorship of patients with malignant melanoma, and mutant NRAS is a major mediator of BRAFi resistance. In this study, employing phenotypic and transcriptomic analysis of isogenic melanoma cells that differ only by NRAS mutational status (BRAFi-sensitive A375-BRAF/NRAS vs. BRAFi-resistant A375-BRAF/NRAS), we show that BRAFi (vemurafenib) treatment selectively targets BRAF/NRAS cells upregulating epithelial-to-mesenchymal transition (EMT) gene expression, paradoxically promoting invasiveness and metastasis in vitro and in vivo.
View Article and Find Full Text PDFThe germicidal properties of short wavelength ultraviolet C (UVC) light are well established and used to inactivate many viruses and other microbes. However, much less is known about germicidal effects of terrestrial solar UV light, confined exclusively to wavelengths in the UVA and UVB regions. Here, we have explored the sensitivity of the human coronaviruses HCoV-NL63 and SARS-CoV-2 to solar-simulated full spectrum ultraviolet light (sUV) delivered at environmentally relevant doses.
View Article and Find Full Text PDFGlyoxalase 1 (GLO1) is an enzyme involved in the detoxification of methylglyoxal (MG), a reactive oncometabolite formed in the context of energy metabolism as a result of high glycolytic flux. Prior clinical evidence has documented GLO1 upregulation in various tumor types including prostate cancer (PCa). However, GLO1 expression has not been explored in the context of PCa progression with a focus on high-grade prostatic intraepithelial neoplasia (HGPIN), a frequent precursor to invasive cancer.
View Article and Find Full Text PDFThe germicidal properties of short wavelength ultraviolet C (UVC) light are well established and used to inactivate many viruses and other microbes. However, much less is known about germicidal effects of terrestrial solar UV light, confined exclusively to wavelengths in the UVA and UVB regions. Here, we have explored the sensitivity of the human coronaviruses HCoV-NL63 and SARS-CoV-2 to solar-simulated full spectrum ultraviolet light (sUV) delivered at environmentally relevant doses.
View Article and Find Full Text PDFHypochlorous acid (HOCl) is the active oxidizing principle underlying drinking water disinfection, also delivered by numerous skin disinfectants and released by standard swimming pool chemicals used on a global scale, a topic of particular relevance in the context of the ongoing COVID-19 pandemic. However, the cutaneous consequences of human exposure to HOCl remain largely unknown, posing a major public health concern. Here, for the first time, we have profiled the HOCl-induced stress response in reconstructed human epidermis and SKH-1 hairless mouse skin.
View Article and Find Full Text PDFThere are two stable isotopes of hydrogen, protium (H) and deuterium (H; D). Cellular stress response dysregulation in cancer represents both a major pathological driving force and a promising therapeutic target, but the molecular consequences and potential therapeutic impact of deuterium (H)-stress on cancer cells remain largely unexplored. We have examined the anti-proliferative and apoptogenic effects of deuterium oxide (DO; 'heavy water') together with stress response gene expression profiling in panels of malignant melanoma (A375, A375, G361, LOX-IMVI), and pancreatic ductal adenocarcinoma (PANC-1, Capan-2, or MIA PaCa-2) cells with inclusion of human diploid Hs27 skin fibroblasts.
View Article and Find Full Text PDFGlyoxalase 1 (encoded by GLO1) is a glutathione-dependent enzyme detoxifying the glycolytic byproduct methylglyoxal (MG), an oncometabolite involved in metabolic reprogramming. Recently, we have demonstrated that GLO1 is overexpressed in human malignant melanoma cells and patient tumors and substantiated a novel role of GLO1 as a molecular determinant of invasion and metastasis in melanoma. Here, employing NanoString™ gene expression profiling (nCounter™ 'PanCancer Progression Panel'), we report that CRISPR/Cas 9-based GLO1 deletion from human A375 malignant melanoma cells alters glucose metabolism and redox homeostasis, observable together with acceleration of tumorigenesis.
View Article and Find Full Text PDFUV-chromophores contained in human skin may act as endogenous sensitizers of photooxidative stress and can be employed therapeutically for the photodynamic elimination of malignant cells. Here, we report that 6-formylindolo[3,2-b]carbazole (FICZ), a tryptophan-derived photoproduct and endogenous aryl hydrocarbon receptor agonist, displays activity as a nanomolar sensitizer of photooxidative stress, causing the photodynamic elimination of human melanoma and nonmelanoma skin cancer cells in vitro and in vivo. FICZ is an efficient UVA/Visible photosensitizer having absorbance maximum at 390 nm (ε = 9180 L mol cm ), and fluorescence and singlet oxygen quantum yields of 0.
View Article and Find Full Text PDFSunless (chemical) tanning is widely regarded as a safe alternative to solar UV-induced skin tanning known to be associated with epidermal genotoxic stress, but the cutaneous biology impacted by chemical tanning remains largely unexplored. Chemical tanning is based on the formation of melanin-mimetic cutaneous pigments ('melanoidins') from spontaneous amino-carbonyl ('glycation') reactions between epidermal amino acid/protein components and reactive sugars including the glycolytic ketose dihydroxyacetone (DHA). Here, we have examined the cutaneous effects of acute DHA-exposure on cultured human HaCaT keratinocytes and epidermal reconstructs, profiled by gene expression array analysis and immunodetection.
View Article and Find Full Text PDFMetabolic reprogramming is a molecular hallmark of cancer. Recently, we have reported the overexpression of glyoxalase 1 (encoded by ), a glutathione-dependent enzyme involved in detoxification of the reactive glycolytic byproduct methylglyoxal, in human malignant melanoma cell culture models and clinical samples. However, the specific role of in melanomagenesis remains largely unexplored.
View Article and Find Full Text PDFBackground: Colon cancer is among the most commonly diagnosed cancers in the United States with an estimated 97220 new cases expected by the end of 2018. It affects 1.2 million people around the world and is responsible for about 0.
View Article and Find Full Text PDFBackground: Colorectal cancer (CRC) is the third most commonly diagnosed cancer and the second leading cause of cancer related deaths in the United States. Racial disparities between Hispanics and Whites exist for incidence of late-onset (LO) CRC. However, not much is known about potential disparities between colon cancer (CC) and rectal cancer (RC) incidence queried individually.
View Article and Find Full Text PDFBackground: The overall incidence of colon cancer (CC) is decreasing, but with increasing early-onset colon cancer (EOCC < 50 years old). Our recent study revealed unique overexpression of cartilage oligomeric matrix protein (COMP) in EOCC and its association with aggressiveness. The aim of this study was to assess CC biology, especially in the young, by evaluating the role of COMP in CC carcinogenesis and cancer progression, detecting COMP in serum and its association with disease stage.
View Article and Find Full Text PDFBackground: About 1.2 million new cases of colon cancer (CC) and 0.6 million deaths are reported every year, establishing CC as an important contributor to worldwide cancer morbidity and mortality.
View Article and Find Full Text PDFBackground: All human islets used in research and for the clinical treatment of diabetes are subject to ischemic damage during pancreas procurement, preservation, and islet isolation. A major factor influencing islet function is exposure of pancreata to cold ischemia during unavoidable windows of preservation by static cold storage (SCS). Improved preservation methods may prevent this functional deterioration.
View Article and Find Full Text PDFBackground: There is currently a shortage of human donor pancreata which limits the broad application of islet transplantation as a treatment for type 1 diabetes. Porcine islets have demonstrated potential as an alternative source, but a study evaluating islets from different donor ages under unified protocols has yet to be conducted.
Methods: Neonatal porcine islets (NPI; 1-3 days), juvenile porcine islets (JPI; 18-21 days), and adult porcine islets (API; 2+ years) were compared in vitro, including assessments of oxygen consumption rate, membrane integrity determined by FDA/PI staining, β-cell proliferation, dynamic glucose-stimulated insulin secretion, and RNA sequencing.