The European Commission's Green Deal is a major policy initiative aiming to achieve a climate-neutral, zero-pollution, sustainable, circular and inclusive economy, driving both the New Industrial Strategy for Europe and the Chemicals Strategy for Sustainability. Innovative materials can help to reach these policy goals, but they need to be safe and sustainable themselves. Thus, one aim is to shift the development of chemicals to Safe- and Sustainable-by-Design, and define a new systems approach and criteria for sustainability to achieve this.
View Article and Find Full Text PDFThe European Green Deal, the European Commission's new Action Plan for a Circular Economy, the new European Industrial Strategy and the Chemicals Strategy for Sustainability launched in October 2020 are ambitious plans to achieve a sustainable, fair and inclusive European Union's economy. In line with the United Nations Sustainable Development Goals 2030, these policies require that any new material or product should be not only functional and cost-effective but also safe and sustainable to ensure compliance with regulation and acceptance by consumers. Nanotechnology is one of the technologies that could enable such a green growth.
View Article and Find Full Text PDFLove wave sensors with silver-modified polypyrrole nanoparticles are developed in this work. These systems prove functional at room temperature with enhanced response, sensitivity and response time, as compared to other state-of-the-art surface acoustic wave (SAW) sensors, towards volatile organic compounds (VOCs). Results demonstrate the monitoring of hundreds of ppb of compounds such as acetone, ethanol and toluene with low estimated limits of detection (~3 ppb for acetone).
View Article and Find Full Text PDFPolypyrrole (PPy) nanorods (NRs) and nanoparticles (NPs) are synthesized via electrochemical and chemical methods, respectively, and tested upon ammonia exposure using Raman and X-ray photoelectron spectroscopy (XPS). Characterization of both nanomaterials via Raman spectroscopy demonstrates the formation of PPy, displaying vibration bands consistent with the literature. Additionally, XPS reveals the presence of neutral PPy species as major components in PPy NRs and PPy NPs, and other species including polarons and bipolarons.
View Article and Find Full Text PDFWe report on the toxicity and bioaccumulation of three different types of Cd-based quantum dots (QDs), dispersed in aqueous medium, for a model plant Allium cepa L. It is believed that encapsulation of nanoparticles should reduce their toxicity and increase their stability in different environments; in this work we studied how QD encapsulation affects their phytotoxicity. Core, core/shell, and core/shell/shell QDs (CdTe, CdTe/ZnS, and CdTe/CdS/ZnS QDs capped by 2-mercaptopropionic acid) were tested and CdCl was used as a positive control.
View Article and Find Full Text PDFThe aim of this review is to summarize the recent progress in the fabrication of efficient nanostructured polymer-based sensors with special focus on polypyrrole. The correlation between physico-chemical parameters, mainly morphology of various polypyrrole nanostructures, and their sensitivity towards selected gas and volatile organic compounds (VOC) is provided. The different approaches of polypyrrole modification with other functional materials are also discussed.
View Article and Find Full Text PDFNanoscale Res Lett
December 2013
A biphasic solvothermal reaction method has been used for the synthesis of TiO2 nanoparticles (NPs). In this method, hydrolysis and nucleation occur at the interface of organic phase (titanium (IV) n-propoxide and stearic acid dissolved in toluene) and water phase (tert-butylamine dissolved in water) resulting in the nucleation of the stearic acid-capped TiO2 NPs. These NPs are hydrophilic due to hydrophobic stearic acid ligands and could be dispersed in toluene, but not in water.
View Article and Find Full Text PDFA diagnostics of infectious diseases can be done by the immunologic methods or by the amplification of nucleic acid specific to contagious agent using polymerase chain reaction. However, in transmissible spongiform encephalopathies, the infectious agent, prion protein (PrP(Sc)), has the same sequence of nucleic acids as a naturally occurring protein. The other issue with the diagnosing based on the PrP(Sc) detection is that the pathological form of prion protein is abundant only at late stages of the disease in a brain.
View Article and Find Full Text PDFThis review provides a brief overview of the variety of carriers employed for targeted drug delivery used in cancer therapy and summarizes advantages and disadvantages of each approach. Particularly, the attention was paid to polymeric nanocarriers, liposomes, micelles, polyethylene glycol, poly(lactic-co-glycolic acid), dendrimers, gold and magnetic nanoparticles, quantum dots, silica nanoparticles, and carbon nanotubes. Further, this paper briefly focuses on several anticancer agents (paclitaxel, docetaxel, camptothecin, doxorubicin, daunorubicin, cisplatin, curcumin, and geldanamycin) and on the influence of their combination with nanoparticulate transporters to their properties such as cytotoxicity, short life time and/or solubility.
View Article and Find Full Text PDFThe requirements for early diagnostics as well as effective treatment of insidious diseases such as cancer constantly increase the pressure on development of efficient and reliable methods for targeted drug/gene delivery as well as imaging of the treatment success/failure. One of the most recent approaches covering both the drug delivery as well as the imaging aspects is benefitting from the unique properties of nanomaterials. Therefore a new field called nanomedicine is attracting continuously growing attention.
View Article and Find Full Text PDFThe template-based methods belong to low-cost and rapid preparation techniques for various nanostructures like nanowires, nanotubes, and nanodots or even quantum dots [QDs]. The nanostructured surfaces with QDs are very promising in the application as a sensor array, also called 'fluorescence array detector.' In particular, this new sensing approach is suitable for the detection of various biomolecules (DNA, proteins) in vitro (in clinical diagnostics) as well as for in vivo imaging.
View Article and Find Full Text PDFIn this study, biotin-conjugated glutathione was synthesized using peptide bonding of the biotin carboxy group and amino group of the γ-glutamic acid to prepare an alternative coating for CdTe quantum dots (QDs). This type of coating combines the functionality of the biotin with the fluorescent properties of the QDs to create a specific, high-affinity fluorescent probe able to react with avidin, streptavidin and/or neutravidin. Biotin-functionalized glutathione-coated CdTe QDs were prepared by a simple one-step method using Na₂ TeO₃ and CdCl₂.
View Article and Find Full Text PDFMagnetic nanoparticles (MNPs) are being of great interest due to their unique purposes. Especially in medicine, application of MNPs is much promising. MNPs have been actively investigated as the next generation of targeted drug delivery for more than thirty years.
View Article and Find Full Text PDFThe use of fluorescent nanoparticles as probes for bioanalytical applications is a highly promising technique because fluorescence-based techniques are very sensitive. Quantum dots (QDs) seem to show the greatest promise as labels for tagging and imaging in biological systems owing to their impressive photostability, which allow long-term observations of biomolecules. The usage of QDs in practical applications has started only recently, therefore, the research on QDs is extremely important in order to provide safe and effective biosensing materials for medicine.
View Article and Find Full Text PDFThe fabrications of iron oxides nanoparticles using co-precipitation and gadolinium nanoparticles using water in oil microemulsion method are reported in this paper. Results of detailed phase analysis by XRD and Mössbauer spectroscopy are discussed. XRD analysis revealed that the crystallite size (mean coherence length) of iron oxides (mainly γ-Fe(2)O(3)) in the Fe(2)O(3) sample was 30 nm, while in Fe(2)O(3)/SiO(2) where the ε-Fe(2)O(3) phase dominated it was only 14 nm.
View Article and Find Full Text PDF