Publications by authors named "Jana Dragunova"

Introduction: Deep facial burns are often combined with inhalation injury that could lead to patient destabilization. Accurate timing of surgical debridement of deep burns in a critical patient is the real medical art. Especially in patients with deep burned face and hands, in whom early debridement promises better functional and aesthetic results.

View Article and Find Full Text PDF

Amniotic membrane is a biological material widely used in plastic and reconstructive surgery and in ophthalmology. Due to its excellent biocompatibility and strength we tried to use it as a scaffold for the in vitro cultivation of different cell types, especially keratinocytes and limbal stem cells. It was possible to cultivate limbal stem cells and keratinocytes without using 3T3 mouse fibroblast feeder cells on deep frozen amniotic membranes.

View Article and Find Full Text PDF

Acellular matrices are used for various purposes and they have been studied extensively for their potential roles in regenerating tissues or organs. The acellular matrix generates physiological cues that mimic the native tissue microenvironment. Acellular dermal matrix (ADM) is a soft connective tissue graft generated by a decellularization process that preserves the intact extracellular skin matrix.

View Article and Find Full Text PDF

Acellular dermal matrix (ADM) is a tissue graft of allogeneic origin from post-mortem tissue donors prepared by an innovative decellularization process. The newly developed non-toxic and low cost decellularization process of cadaver origin dermis included ADM in breast reconstruction procedures proved to help coverage of the lower-pole of breast expanders or implants. As the results have shown, it did help to eliminate autologous dermis donor site morbidity along with shortening the operation time by avoiding elevation of additional muscle or fascia during the operation.

View Article and Find Full Text PDF

In this study we evaluated the biocompatibility of a modified polyurethane nanofiber membrane on a polypropylene spunbond substrate. This material was treated with plasma using diffuse coplanar surface barrier discharge, and subsequent modification was done by continuous spraying of a biologically active chitosan solution (CHIT) containing an inclusion complex of β-cyclodextrin (β-CD) encapsulating berberine (BRB). Biocompatibility was evaluated using several in vitro assays.

View Article and Find Full Text PDF

The preparation and study of three-dimensional functional skin substitutes has been the focus of intense research for several decades. Dermal substitutes are now commonly used in medical practice for a variety of applications. Here, we assess the toxicity of seven selected acellular dermal matrix materials to establish their potential for use in future three-dimensional skin substitute studies.

View Article and Find Full Text PDF

Substitution of skin, particularly in extensive burns, is one of the key points for patients mortality reduction. In addition to the use of allogeneic and autologous skin substitutes, new developments in tissue engineering would enable the use biosynthetic and combined skin substitutes, which could mimic the structure and functions of normal skin. Several such types of substitutes like cultured allogeneic and autologous keratinocytes, allogeneic/autologous composites, acellular matrices, matrices based on biological substances such as collagen/hyaluronic acid, and matrices seeded by different cell types (keratinocytes, dermal fibroblasts, stem cells) already exist.

View Article and Find Full Text PDF

Both allogenic and autologous cultured skin cells have been used clinically on burn patients. In vitro cultivation of human keratinocytes has been routinely provided by the Central Tissue Bank in Bratislava since 1996, with an average annual production of around 7,000 cm(2). Keratinocytes have been cultivated using a version of the original by Rheinwald and Green (Cell 6:317-330, 1975) methodology which has been modified over time in our laboratory as we gained more experience with this serial passage system.

View Article and Find Full Text PDF

Glucan preparations, primarily modified water-soluble glucans, are involved in the activation of the body's natural defense mechanisms and in the acceleration of the skin's wound-healing processes. Pleuran, an insoluble beta-D-glucan in hydrogel form, offers a natural alternative to more common chemically derivated soluble beta-D-glucans. Pleuran was applied to human keratinocyte primary cultures, and after 24 h of incubation the release of matrix metalloproteinase 9 (MMP-9) and metalloproteinase 2 (MMP-2) by stimulated keratinocytes was detected using gelatine zymography.

View Article and Find Full Text PDF

The worldwide growing interest to biomaterials over the last years results from their irreplaceable role in medical clinic. Hydroxyapatite is used in bone reconstruction because of its similar chemical structure compared to the inorganic composition of human bone and it is basic building component of many newly prepared biomaterials. In this study, we evaluated cytotoxic/antiproliferative activity of hydroxyapatite extract using murine fibroblast cell line NIH-3T3 and two in vitro different cytotoxic assays: growth inhibition assay and MTT assay.

View Article and Find Full Text PDF