Peroxisomes are multifunctional, dynamic organelles present in nearly all eukaryotic cells. Determining their structural and functional characteristics often requires obtaining isolated and purified peroxisomes via subcellular fractionation. Subcellular fractionation techniques are generally based on a three-step procedure: preparation of a cell-free homogenate (postnuclear supernatant), generation of an organellar pellet by differential centrifugation, and density gradient centrifugation.
View Article and Find Full Text PDFCold Spring Harb Protoc
September 2015
This protocol is designed for large-scale isolation of highly purified peroxisomes from Saccharomyces cerevisiae using two consecutive density gradient centrifugations. Instructions are provided for harvesting up to 60 g of oleic acid-induced yeast cells for the preparation of spheroplasts and generation of organellar pellets (OPs) enriched in peroxisomes and mitochondria. The OPs are loaded onto eight continuous 36%-68% (w/v) sucrose gradients.
View Article and Find Full Text PDFCold Spring Harb Protoc
September 2015
This protocol describes the isolation of peroxisomes from Saccharomyces cerevisiae by density gradient centrifugation using a sucrose, OptiPrep, or OptiPrep/sucrose gradient. Oleic acid-induced cells are first converted to spheroplasts using lyticase for cell wall digestion. Spheroplasts are homogenized, and nuclei and cell debris are removed by low-speed centrifugation to produce a postnuclear supernatant (PNS).
View Article and Find Full Text PDF