Publications by authors named "Jana Burianova"

Hyaluronan (HA) is a core constituent of perineuronal nets (PNNs) that surround subpopulations of neurones. The PNNs control synaptic stabilization in both the developing and adult central nervous system, and disruption of PNNs has shown to reactivate neuroplasticity. We investigated the possibility of memory prolongation by attenuating PNN formation using 4-methylumbelliferone (4-MU), an inhibitor of HA synthesis.

View Article and Find Full Text PDF

Inhibitory circuits in the auditory brainstem undergo multiple postnatal changes that are both activity-dependent and activity-independent. We tested to see if the shift from GABA- to glycinergic transmission, which occurs in the rat medial nucleus of the trapezoid body (MNTB) around the onset of hearing, depends on sound-evoked neuronal activity. We prevented the activity by bilateral cochlear ablations in early postnatal rats and studied ionotropic GABA and glycine receptors in MNTB neurons after hearing onset.

View Article and Find Full Text PDF

Fischer 344 (F344) rats represent a strain that is frequently used as a model for fast aging. In this study, we systematically compare the hearing function during aging in male and female F344 rats, by recording auditory brainstem responses (ABRs) and distortion product otoacoustic emissions (DPOAEs). In addition to this, the functional parameters are correlated with the cochlear histology.

View Article and Find Full Text PDF

In the present study, an unbiased stereological method was used to determine the number of all neurons in Nissl stained sections of the inferior colliculus (IC), medial geniculate body (MGB), and auditory cortex (AC) in rats (strains Long Evans and Fischer 344) and their changes with aging. In addition, using the optical fractionator and western blot technique, we also evaluated the number of SMI-32-immunoreactive (-ir) neurons and levels of non-phosphorylated neurofilament proteins in the IC, MGB, AC, and visual cortex of young and old rats of the two strains. The SMI-32 positive neuronal population comprises about 10% of all neurons in the rat IC, MGB, and AC and represents a prevalent population of large neurons with highly myelinated and projecting processes.

View Article and Find Full Text PDF

In previous studies (Grécová et al., Eur J Neurosci 29:1921-1930, 2009; Bures et al., Eur J Neurosci 32:155-164, 2010), we demonstrated that after an early postnatal short noise exposure (8 min 125 dB, day 14) changes in the frequency tuning curves as well as changes in the coding of sound intensity are present in the inferior colliculus (IC) of adult rats.

View Article and Find Full Text PDF

The strength of the acoustic startle response (ASR) to short bursts of broadband noise or tone pips (4, 8 and 16 kHz) and the prepulse inhibition (PPI) of the ASR elicited by prepulse tones (4, 8 and 16 kHz) were measured in parvalbumin-deficient (PV-/-) mice and in age-matched PV+/+ mice as controls. Hearing thresholds as determined from recordings of auditory brainstem responses were found to be similar in both genotypes. The ASRs to broadband noise and tones of low and middle frequencies were stronger than the ASRs in response to high-frequency tones in both groups.

View Article and Find Full Text PDF

We investigated the representation of four typical guinea pig vocalizations in the auditory cortex (AI) in anesthetized guinea pigs with the aim to compare cortical data to the data already published for identical calls in subcortical structures - the inferior colliculus (IC) and medial geniculate body (MGB). Like the subcortical neurons also cortical neurons typically responded to many calls with a time-locked response to one or more temporal elements of the calls. The neuronal response patterns in the AI correlated well with the sound temporal envelope of chirp (an isolated short phrase), but correlated less well in the case of chutter and whistle (longer calls) or purr (a call with a fast repetition rate of phrases).

View Article and Find Full Text PDF

The auditory cortex (AC) of the rat has been the subject of many studies, yet the details of its functional organization are still not well understood. We describe here the functional organization of the AC in young rats (strain Long Evans, aged 30-35 days, anesthetized with ketamine/xylazine) on the basis of the neuronal responses to acoustic stimuli. Based on the neuronal responses to broad band noise (BBN) and pure tone bursts, the AC may be divided into the primary auditory cortex (AI) and three other core fields: anterior (AAF), suprarhinal (SRAF) and posterior (PAF) as well as an unspecific region (UR) inserted between the AI and AAF.

View Article and Find Full Text PDF

The behavioral consequences of age-related changes in the auditory system were studied in Fischer 344 (F344) rats as a model of fast aging and in Long Evans (LE) rats as a model of normal aging. Hearing thresholds, the strength of the acoustic startle responses (ASRs) to noise and tonal stimuli, and the efficiency of the prepulse inhibition (PPI) of ASR were assessed in young-adult, middle-aged, and aged rats of both strains. Compared with LE rats, F344 rats showed larger age-related hearing threshold shifts, and the amplitudes of their startle responses were mostly lower.

View Article and Find Full Text PDF

Age-related changes in the levels of major intracellular calcium buffers are known to occur in different parts of the mammalian brain, including the central auditory pathway. In the present study, we evaluate with immunohistochemistry and the western blot technique the effect that aging has on the calbindin- and calretinin-expressing system of neurons in the higher structures of the central auditory pathway, in the inferior colliculus (IC), medial geniculate body (MGB) and auditory cortex (AC) of two rat strains, the slowly aging Long-Evans and the fast aging Fischer 344. Interestingly, the age-related changes demonstrated a similar character regardless of the rat strain.

View Article and Find Full Text PDF

Disruption to the sensitive balance of long-chain fatty acids and glucose in the heart could cause cardiovascular diseases. Searching for a possible role of novel protein kinase C (nPKC) in heart with disrupted energy balance, we compared the insulin-resistant spontaneously hypertensive rats (SHR), which carry a nonfunctional variant of the fatty acid transporter FAT/CD36, with the less insulin-resistant congenic strain SHR-4 that is genetically identical except for a segment on chromosome 4 including a wild-type gene for a functional FAT/CD36. We analyzed expression of the nPKC-δ and -ε isoforms plus triacylglycerols (TAG) content in the myocardium of both FAT/CD36 strains and after a high sucrose diet (HSD).

View Article and Find Full Text PDF

Noise exposure during the critical period of postnatal development in rats results in anomalous processing of acoustic stimuli in the adult auditory system. In the present study, the behavioral consequences of an acute acoustic trauma in the critical period are assessed in adult rats using the acoustic startle reflex (ASR) and prepulse inhibition (PPI) of ASR. Rat pups (strain Long-Evans) were exposed to broad-band noise of 125 dB SPL for 8 min on postnatal day 14; at the age of 3-5 months, ASR and PPI of ASR were examined and compared with those obtained in age-matched controls.

View Article and Find Full Text PDF

Changes in the levels of gamma-aminobutyric acid (GABA) are known to occur in different parts of the brain during aging. In our study we attempted to define the effect that aging has on glutamate decarboxylase (GAD), the key enzyme in the synthesis of GABA, in the central parts of the auditory system. Age-related changes in GAD65 and GAD67 levels were investigated using immunohistochemistry and Western blotting in the inferior colliculus (IC), the auditory cortex (AC) and the visual cortex in Long-Evans rats.

View Article and Find Full Text PDF