The β-adrenergic receptor (β-AR) plays an important role in regulating a variety of cell and organ functions in different animal species and is an important target in asthma pathogenesis and therapy. The β-AR expression and function in equine bronchial epithelial cells (EBEC) were not known but innervation and significant decrease in receptor level were reported in the equine bronchial tissues from asthmatic horses. I-iodocyanopindolol (ICYP) binding studies were undertaken in primary freshly isolated and cultured EBEC to identify the presence of the β-ARs.
View Article and Find Full Text PDFInteraction between epithelial cells and fibroblasts play a key role in wound repair and remodelling in the asthmatic airway epithelium. We present the establishment of a co-culture model using primary equine bronchial epithelial cells (EBECs) and equine bronchial fibroblasts (EBFs). EBFs at passage between 4 and 8 were seeded on the bottom of 24-well plates and treated with mitomycin C at 80% confluency.
View Article and Find Full Text PDFRNA interference (RNAi)-based strategies that mediate the specific knockdown of target genes by administration of small interfering RNAs (siRNAs) could be applied for treatment of presently incurable neurodegenerative diseases such as Parkinson's disease. However, inefficient delivery of siRNA into neurons hampers in vivo application of RNAi. We have previously established the 4-12 kDa branched polyethylenimine (PEI) F25-LMW with superior transfection efficacy for delivery of siRNA in vivo.
View Article and Find Full Text PDF