Publications by authors named "JanWillem Taanman"

Primary mitochondrial diseases (PMDs) are among the most common inherited neurological disorders. They are caused by pathogenic variants in mitochondrial or nuclear DNA that disrupt mitochondrial structure and/or function, leading to impaired oxidative phosphorylation (OXPHOS). One emerging subcategory of PMDs involves defective phospholipid (PL) metabolism.

View Article and Find Full Text PDF

Autosomal recessive pathogenetic variants in the gene cause deficiency of deoxyguanosine kinase activity and mitochondrial deoxynucleotides pool imbalance, consequently, leading to quantitative and/or qualitative impairment of mitochondrial DNA synthesis. Typically, patients present early-onset liver failure with or without neurological involvement and a clinical course rapidly progressing to death. This is an international multicentre study aiming to provide a retrospective natural history of deoxyguanosine kinase deficient patients.

View Article and Find Full Text PDF

Background & Aims: The PNPLA3 rs738409 C>G (encoding for I148M) variant is a risk locus for the fibrogenic progression of chronic liver diseases, a process driven by hepatic stellate cells (HSCs). We investigated how the PNPLA3 I148M variant affects HSC biology using transcriptomic data and validated findings in 3D-culture models.

Methods: RNA sequencing was performed on 2D-cultured primary human HSCs and liver biopsies of individuals with obesity, genotyped for the PNPLA3 I148M variant.

View Article and Find Full Text PDF

Huntington's disease (HD) predominantly affects the brain, causing a mixed movement disorder, cognitive decline and behavioural abnormalities. It also causes a peripheral phenotype involving skeletal muscle. Mitochondrial dysfunction has been reported in tissues of HD models, including skeletal muscle, and lymphoblast and fibroblast cultures from patients with HD.

View Article and Find Full Text PDF
Article Synopsis
  • Mitochondrial oxidative phosphorylation defects are linked to various neurological and neuromuscular diseases, and primary dermal fibroblasts are commonly used to study these disorders.
  • The study explored how using galactose or fructose instead of glucose in culture affects fibroblast energy metabolism, revealing that both sugars promote more oxidative processes while reducing cell growth, with galactose having a more significant impact on proliferation.
  • Results indicate that while both sugars enhance mitochondrial function, fructose is better suited for studying partial oxidative phosphorylation defects due to its less drastic effect on cell growth compared to galactose.
View Article and Find Full Text PDF

Pulmonary arterial hypertension (PAH) is a rare cardiopulmonary disorder, involving the remodelling of the small pulmonary arteries. Underlying this remodelling is the hyper-proliferation of pulmonary arterial smooth muscle cells within the medial layers of these arteries and their encroachment on the lumen. Previous studies have demonstrated an association between excessive mitochondrial fragmentation, a consequence of increased expression and post-translational activation of the mitochondrial fission protein dynamin-related protein 1 (DRP1), and pathological proliferation in PASMCs derived from PAH patients.

View Article and Find Full Text PDF

Background: Recent evidence has indicated that alterations in energy metabolism play a critical role in the pathogenesis of fibrotic diseases. Studies have suggested that 'metabolic reprogramming' involving the glycolysis and oxidative phosphorylation (OXPHOS) in cells lead to an enhanced generation of energy and biosynthesis. The aim of this study was to assess the molecular basis of changes in fibrotic metabolism in systemic sclerosis (Scleroderma; SSc) and highlight the most appropriate targets for anti-fibrotic therapies.

View Article and Find Full Text PDF

Cognitive impairment is a common non-motor complication of Parkinson's disease (PD). Glucocerebrosidase gene (GBA1) variants are found in 10-15% of PD cases and are numerically the most important risk factor for PD and dementia with Lewy bodies. Accumulation of α-synuclein and tau pathology is thought to underlie cognitive impairment in PD and likely involves cholinergic as well as dopaminergic neurons.

View Article and Find Full Text PDF

Mutations in the PINK1 and PRKN genes are the most common cause of early-onset familial Parkinson disease. These genes code for the PINK1 and Parkin proteins, respectively, which are involved in the degradation of dysfunctional mitochondria through mitophagy. An early step in PINK1 -Parkin mediated mitophagy is the ubiquitination of the mitofusin proteins MFN1 and -2.

View Article and Find Full Text PDF

Introduction: Marginal human donor livers are highly susceptible to ischaemia reperfusion injury and mitochondrial dysfunction. Oxygenation during hypothermic machine perfusion (HMP) was proposed to protect the mitochondria but the mechanism is unclear. Additionally, the distribution and uptake of perfusate oxygen during HMP are unknown.

View Article and Find Full Text PDF

Ischemia is a major cause of kidney damage. Proximal tubular epithelial cells (PTECs) are highly susceptible to ischemic insults that frequently cause acute kidney injury (AKI), a potentially life-threatening condition with high mortality. Accumulating evidence has identified altered mitochondrial function as a central pathologic feature of AKI.

View Article and Find Full Text PDF

Doxycycline has anti-tumour effects in a range of tumour systems. The aims of this study were to define the role mitochondria play in this process and examine the potential of doxycycline in combination with gemcitabine. We studied the adenocarcinoma cell line A549, its mitochondrial DNA-less derivative A549 ρ° and cultured fibroblasts.

View Article and Find Full Text PDF

Background: Cell or tissue specific background may influence the consequences of expressing the Huntington's disease (HD) mutation. Aggregate formation is known to occur in skeletal muscle, but not heart of the R6/2 fragment HD model.

Objective: We asked whether aggregate formation and the expression and subcellular localization of huntingtin species was associated with mitochondrial dysfunction.

View Article and Find Full Text PDF

Tetracyclines have anticancer properties in addition to their well-known antibacterial properties. It has been proposed that tetracyclines slow metastasis and angiogenesis through inhibition of matrix metalloproteinases. However, we believe that the anticancer effect of tetracyclines is due to their inhibition of mitochondrial protein synthesis, resulting in a decrease of the mitochondrial energy generating capacity.

View Article and Find Full Text PDF

Since the online publication of the article, the authors have noted errors with Table 2; this has now been corrected in both the HTML and the PDF.

View Article and Find Full Text PDF

The α-synuclein protein, encoded by SNCA, has a key role in the pathogenesis of Parkinson's disease and other synucleinopathies. Although usually sporadic, Parkinson's disease can result from inherited copy number variants in SNCA and other genes. We have hypothesized a role of somatic SNCA mutations, leading to mosaicism, in sporadic synucleinopathies.

View Article and Find Full Text PDF

Groundbreaking work by Kadenbach and colleagues in the 1980s revealed the presence of 13 subunits in the mammalian mitochondrial cytochrome-c oxidase (COX; Complex IV). This observation stood the test of time until 2012 when it was demonstrated that NDUFA4, a polypeptide previously attributed to mitochondrial Complex I, was a 14th subunit of COX. In his recent opinion article, Kadenbach argued that NDUFA4 is not a subunit of COX.

View Article and Find Full Text PDF

Potential bias introduced during DNA isolation is inadequately explored, although it could have significant impact on downstream analysis. To investigate this in human brain, we isolated DNA from cerebellum and frontal cortex using spin columns under different conditions, and salting-out. We first analysed DNA using array CGH, which revealed a striking wave pattern suggesting primarily GC-rich cerebellar losses, even against matched frontal cortex DNA, with a similar pattern on a SNP array.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers found the pathogenic c.424G>A p.Val142Ile mutation in three families of Indian ancestry, but further testing in a larger group of Indian patients did not reveal additional mutations.
  • * The RNase H1 mutations are identified as a significant cause of adult mitochondrial disease related to ophthalmoplegia and other symptoms, suggesting that genetic testing for this mutation should be expanded in relevant patient groups.
View Article and Find Full Text PDF

PurposeMutations in POLG, the most common single-gene cause of inherited mitochondrial disease, are diagnostically challenging owing to clinical heterogeneity and overlap between syndromes. We aimed to improve the clinical recognition of POLG-related disorders in the pediatric population.MethodsWe performed a multinational, phenotype: genotype study using patients from three centers, two Norwegian and one from the United Kingdom.

View Article and Find Full Text PDF

Numerically the most important risk factor for the development of Parkinson's disease (PD) is the presence of mutations in the glucocerebrosidase GBA1 gene. In vitro and in vivo studies show that GBA1 mutations reduce glucocerebrosidase (GCase) activity and are associated with increased α-synuclein levels, reflecting similar changes seen in idiopathic PD brain. We have developed a neural crest stem cell-derived dopaminergic neuronal model that recapitulates biochemical abnormalities in GBA1 mutation-associated PD.

View Article and Find Full Text PDF

There is evidence of an imbalance of mitochondrial fission and fusion in patients with Huntington's disease (HD) and HD animal models. Fission and fusion are important for mitochondrial homeostasis including mitochondrial DNA (mtDNA) maintenance and may be relevant for the selective striatal mtDNA depletion that we observed in the R6/2 fragment HD mouse model. We aimed to investigate the fission/fusion balance and the integrity of the mitochondrial membrane system in cortex and striatum of end-stage R6/2 mice and wild-type animals.

View Article and Find Full Text PDF

Background: TRNT1 (CCA-adding transfer RNA nucleotidyl transferase) enzyme deficiency is a new metabolic disease caused by defective post-transcriptional modification of mitochondrial and cytosolic transfer RNAs (tRNAs).

Results: We investigated four patients from two families with infantile-onset cyclical, aseptic febrile episodes with vomiting and diarrhoea, global electrolyte imbalance during these episodes, sideroblastic anaemia, B lymphocyte immunodeficiency, retinitis pigmentosa, hepatosplenomegaly, exocrine pancreatic insufficiency and renal tubulopathy. Other clinical features found in children include sensorineural deafness, cerebellar atrophy, brittle hair, partial villous atrophy and nephrocalcinosis.

View Article and Find Full Text PDF

Mutations in the nuclear gene POLG (encoding the catalytic subunit of DNA polymerase gamma) are an important cause of mitochondrial disease. The most common POLG mutation, A467T, appears to exhibit considerable phenotypic heterogeneity. The mechanism by which this single genetic defect results in such clinical diversity remains unclear.

View Article and Find Full Text PDF

Defects of mitochondrial dynamics are emerging causes of neurological disease. In two children presenting with severe neurological deterioration following viral infection we identified a novel homozygous STAT2 mutation, c.1836 C>A (p.

View Article and Find Full Text PDF