Publications by authors named "Jan-Willem Lankhaar"

A windkessel model is widely used to operationalize vascular characteristics. In this paper, we employ a noniterative subspace model identification (SMI) algorithm to estimate parameters in a three- and four-element windkessel model by application of physical foreknowledge. Simulation data of the systemic circulation were used to investigate systematic and random errors in the parameter estimations.

View Article and Find Full Text PDF

Simulations are useful to study the heart's ability to generate flow and the interaction between contractility and loading conditions. The left ventricular pressure-volume (PV) relation has been shown to be nonlinear, but it is unknown whether a linear model is accurate enough for simulations. Six models were fitted to the PV-data measured in five sheep and the estimated parameters were used to simulate PV-loops.

View Article and Find Full Text PDF

The time-varying elastance concept provides a comprehensive description of the intrinsic mechanical properties of the left ventricle that are assumed to be load independent. Based on pressure-volume measurements obtained with combined pressure conductance catheterization in six open-chest anesthetized sheep, we show that the time to reach end systole (defined as maximal elastance) is progressively prolonged for increasing ventricle pressures, which challenges the original (load-independent) time-varying elastance concept. Therefore, we developed a method that takes into account load dependency by normalization of time course of the four cardiac phases (isovolumic contraction, ejection, isovolumic relaxation, filling) individually.

View Article and Find Full Text PDF

Frank's Windkessel model described the hemodynamics of the arterial system in terms of resistance and compliance. It explained aortic pressure decay in diastole, but fell short in systole. Therefore characteristic impedance was introduced as a third element of the Windkessel model.

View Article and Find Full Text PDF

Aims: Pulmonary arterial compliance (C) is increasingly being recognized as an important contributor to right ventricular afterload, but for monitoring of treatment of pulmonary hypertension (PH) most often still only pulmonary vascular resistance (R) is used. We aimed at testing the hypothesis that R and C are coupled during treatment of PH and that substantial changes in both R and C would result in more haemodynamic improvement than changes in R alone.

Methods And Results: Data were analysed of two right-heart catheterizations of 52 patients with pulmonary arterial hypertension and 10 with chronic-thromboembolic PH.

View Article and Find Full Text PDF

Aims: Decreased total compliance of the pulmonary vascular bed is associated with increased mortality in patients with pulmonary arterial hypertension (PAH). We investigated whether proximal pulmonary artery stiffness, in terms of area distensibility and noninvasively assessed relative area change (RAC), calculated as relative cross-sectional area change, predicts mortality in patients with PAH.

Methods And Results: Eighty-six subjects underwent right-heart catheterization and MRI to assess area distensibility and RAC.

View Article and Find Full Text PDF

Right ventricular (RV) afterload is commonly defined as pulmonary vascular resistance, but this does not reflect the afterload to pulsatile flow. The purpose of this study was to quantify RV afterload more completely in patients with and without pulmonary hypertension (PH) using a three-element windkessel model. The model consists of peripheral resistance (R), pulmonary arterial compliance (C), and characteristic impedance (Z).

View Article and Find Full Text PDF

The aim of this study was to investigate the contribution of direct right-to-left ventricular interaction to left ventricular filling and stroke volume in 46 patients with pulmonary arterial hypertension (PAH) and 18 control subjects. Stroke volume, right and left ventricular volumes, left ventricular filling rate, and interventricular septum curvature were measured by magnetic resonance imaging and left atrial filling by transesophageal echocardiography. Stroke volume, left ventricular end-diastolic volume, and left ventricular peak filling rate were decreased in PAH patients compared with control subjects: 28 +/- 13 vs.

View Article and Find Full Text PDF

Purpose: To investigate whether an existing method for correction of phase offset errors in phase-contrast velocity quantification is applicable for assessment of main pulmonary artery flow with an MR scanner equipped with a high-power gradient system.

Materials And Methods: The correction method consists of fitting a surface through the time average of stationary pixels of velocity-encoded phase images, and subtracting this surface from the velocity images. Pixels are regarded as stationary if their time standard deviation falls into the lowest percentile.

View Article and Find Full Text PDF