Remyelination failure by oligodendrocytes contributes to the functional impairment that characterizes the demyelinating disease multiple sclerosis (MS). Since incomplete remyelination will irreversibly damage axonal connections, treatments effectively promoting remyelination are pivotal in halting disease progression. Our previous findings suggest that fibronectin aggregates, as an environmental factor, contribute to remyelination failure by perturbing oligodendrocyte progenitor cell (OPC) maturation.
View Article and Find Full Text PDFVaginal epithelium is colonized by different bacterial strains and species. The bacterial composition of vaginal biofilms controls the balance between health and disease. Little is known about the relative contribution of the epithelial and bacterial cell surfaces to bacterial adhesion and whether and how adhesion is regulated over cell membrane regions.
View Article and Find Full Text PDFSphingosine kinases (SphKs) and their product sphingosine-1-phosphate (S1P) have been reported to regulate apoptosis and survival of liver cells. Cholestatic liver diseases are characterized by cytotoxic levels of bile salts inducing liver injury. It is unknown whether SphKs and/or S1P play a role in this pathogenic process.
View Article and Find Full Text PDFNatural hibernation consists of torpid phases with metabolic suppression alternating with euthermic periods. Induction of torpor holds substantial promise in various medical conditions, including trauma, major surgery, and transplantation. Torpor in mice can be induced pharmacologically by 5'-AMP.
View Article and Find Full Text PDFLipid rafts have been isolated on the basis of their resistance to various detergents and more recently by using detergent-free procedures. The actin cytoskeleton is now recognized as a dynamic regulator of lipid raft stability. We carefully analyzed the effects of the cortical actin-disrupting agent latrunculin B on lipid raft markers of both protein and lipid nature and show that two detergent-free membrane subtypes can be isolated and separated from each other on a one-step density gradient combined with pooling of the appropriate gradient fractions.
View Article and Find Full Text PDFVesicles prepared from cellular plasma membranes are widely used in science for different purposes. The outer membrane leaflet differs from the inner membrane leaflet of the vesicle, and during vesicle preparation procedures two types of vesicles will be generated: right-side-out vesicles, of which the outer leaflet is topologically equivalent to the outer monolayer of the cellular plasma membrane, and inside-out vesicles. Because two populations of vesicles exist, sidedness information of the vesicle preparation is indispensable.
View Article and Find Full Text PDFMRP1 (multidrug-resistance-related protein 1)/ABCC1 (ATP-binding cassette transporter C1) has been localized in cholesterol-enriched lipid rafts, which suggests a role for these lipid rafts and/or cholesterol in MRP1 function. In the present study, we have shown for the first time that nearly complete oxidation of free cholesterol in the plasma membrane of BHK-MRP1 (MRP1-expressing baby hamster kidney) cells did not affect MRP1 localization in lipid rafts or its efflux function, using 5-carboxyfluorescein diacetate as a substrate. Inhibition of cholesterol biosynthesis, using lovastatin in combination with RO 48-8071, an inhibitor of oxidosqualene cyclase, resulted in a shift of MRP1 out of lipid raft fractions, but did not affect MRP1-mediated efflux in Neuro-2a (neuroblastoma) cells.
View Article and Find Full Text PDFHibernation is an energy-conserving behavior consisting of periods of inhibited metabolism ('torpor') with lowered body temperature. Torpor bouts are interspersed by arousal periods, in which metabolism increases and body temperature returns to euthermia. In deep torpor, the body temperature typically decreases to 2-10 °C, and major physiological and immunological changes occur.
View Article and Find Full Text PDFMRP1 (ABCC1) is known to be localized in lipid rafts. Here we show in two different cell lines that localization of Mrp1/MRP1 (Abcc1/ABCC1) in lipid rafts and its function as an efflux pump are dependent on cortical actin. Latrunculin B disrupts both cortical actin and actin stress fibers.
View Article and Find Full Text PDFIn non-phagocytic cells such as endothelial cells, processing of liposomes and subsequent release of drug content is often inefficient due to the absence of professional processing machinery, which limits pharmacological efficacy. We therefore developed a liposome based drug delivery system with superior intracellular release characteristics. The design was based on long circulating conventional liposomes that were formulated with a cationic amphiphile, 1-methyl-4-(cis-9-dioleyl)methyl-pyridinium-chlorid (SAINT-C18).
View Article and Find Full Text PDFLipid rafts have been implicated in many cellular functions, including protein and lipid transport and signal transduction. ATP-binding cassette (ABC) transporters have also been localized in these membrane domains. In this review the evidence for this specific localization will be evaluated and discussed in terms of relevance to ABC transporter function.
View Article and Find Full Text PDFE-selectin-directed targeted drug delivery was analyzed in anti-glomerular basement membrane glomerulonephritis. Liposomes conjugated with anti-E-selectin antibodies (Ab(Esel) liposomes) were internalized by activated endothelial cells in vitro through E-selectin-mediated endocytosis. At the onset of glomerulonephritis in mice, E-selectin was expressed on glomerular endothelial cells, which resulted in homing of Ab(Esel) liposomes to glomeruli after intravenous administration.
View Article and Find Full Text PDFAb binding to CD20 has been shown to induce apoptosis in B cells. In this study, we demonstrate that rituximab sensitizes lymphoma B cells to Fas-induced apoptosis in a caspase-8-dependent manner. To elucidate the mechanism by which Rituximab affects Fas-mediated cell death, we investigated rituximab-induced signaling and apoptosis pathways.
View Article and Find Full Text PDFPrevious studies have indicated a role for glucosylceramide synthase (GCS) in multidrug resistance (MDR), either related to turnover of ceramide (Cer) or generation of gangliosides, which modulate apoptosis and/or the activity of ABC transporters. This study challenges the hypothesis that gangliosides modulate the activity of ABC transporters and was performed in two human neuroblastoma cell lines, expressing either functional P-glycoprotein (Pgp) or multidrug resistance-related protein 1 (MRP1). Two inhibitors of GCS, D,L-threo-1-phenyl-2-hexadecanoylamino-3-pyrrolidino-1-propanol (t-PPPP) and N-butyldeoxynojirimycin (NB-dNJ), very efficiently depleted ganglioside content in two human neuroblastoma cell lines.
View Article and Find Full Text PDFThe sphingolipid ceramide has been recognized as an important mediator in the apoptotic machinery, and its efficient conversion to glucosylceramide has been associated with multidrug resistance. Therefore, inhibitors of glucosylceramide synthase are explored as tools for treatment of cancer. In this study, we used D,L-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol to sensitize Neuro-2a murine neuroblastoma cells to the microtubule-stabilizing agent paclitaxel.
View Article and Find Full Text PDFHepG2 cells, stably transfected with MDR1 cDNA, encoding the P-glycoprotein multidrug resistance efflux pump, display an altered sphingolipid composition compared to control cells, stably transfected with empty vector. The MDR1 overexpressing cells display a approximately 3-fold increased level of lactosylceramide and an increased ganglioside mass. Both the mRNA and the activity of lactosylceramide synthase were increased in HepG2/MDR1 cells.
View Article and Find Full Text PDFPreviously we have described a novel multidrug-resistant cell line, HT29(col), which displayed over expression of the multidrug-resistance protein 1 (MRP1) and an altered sphingolipid composition, including enhanced levels of glucosylceramide (GlcCer; Kok JW, Veldman RJ, Klappe K, Koning H, Filipeanu C, Muller M. Int J Cancer 2000;87:172-8). In our study, long-term screening revealed that, during colchicine-induced acquisition of multidrug resistance in a new HT29(col) cell line, increases in GlcCer occurred concomitantly with upregulation of MRP1 expression.
View Article and Find Full Text PDFThe sphingolipid composition and multidrug resistance status of three human neuroblastoma cell lines were established. SK-N-FI cells displayed high expression and functional (efflux) activity of P-glycoprotein, while multidrug resistance-related protein 1 was relatively abundant and most active in SK-N-AS cells. These two cell lines exhibited higher sphingolipid levels, compared to SK-N-DZ, which had the lowest activity of either ATP-binding cassette transporter protein.
View Article and Find Full Text PDFConversion of ceramide, a putative mediator of anticancer drug-induced apoptosis, into glucosylceramide, by the action of glucosylceramide synthase (GCS), has been implicated in drug resistance. Herein, we compared GM95 mouse melanoma cells deficient in GCS activity, with cells stably transfected with a vector encoding GCS (GM95/GCS). Enzymatic and metabolic analysis demonstrated that GM95/GCS cells expressed a fully functional enzyme, resulting in normal ceramide glycosylation.
View Article and Find Full Text PDFIn this study, we describe an ordered formation of long- and very long-chain ceramide species in relation to the progression of B-cell receptor (BcR) triggering induced apoptosis. An early and caspase-independent increase in long-chain ceramide species, in which C(16)- ceramide predominated, was observed 6 h after BcR triggering. In contrast, very long-chain ceramide species were generated later, 12-24 h after BcR triggering.
View Article and Find Full Text PDFDisseminated neuroblastoma usually calls for chemotherapy as the primary approach for treatment. Treatment failure is often attributable to drug resistance. This involves a variety of cellular mechanisms, including increased drug efflux through expression of ATP-binding cassette transporters (e.
View Article and Find Full Text PDFMultidrug-resistant tumor cells display enhanced levels of glucosylceramide. In this study, we investigated how this relates to the overall sphingolipid composition of multidrug-resistant ovarian carcinoma cells and which mechanisms are responsible for adapted sphingolipid metabolism. We found in multidrug-resistant cells substantially lower levels of lactosylceramide and gangliosides in sharp contrast to glucosylceramide, galactosylceramide, and sphingomyelin levels.
View Article and Find Full Text PDF