Mycobacteria and other actinobacteria possess proteasomal degradation pathways in addition to the common bacterial compartmentalizing protease systems. Proteasomal degradation plays a crucial role in the survival of these bacteria in adverse environments. The mycobacterial proteasome interacts with several ring-shaped activators, including the bacterial proteasome activator (Bpa), which enables energy-independent degradation of heat shock repressor HspR.
View Article and Find Full Text PDFMetabolite-protein interactions regulate diverse cellular processes, prompting the development of methods to investigate the metabolite-protein interactome at a global scale. One such method is our previously developed structural proteomics approach, limited proteolysis-mass spectrometry (LiP-MS), which detects proteome-wide metabolite-protein and drug-protein interactions in native bacterial, yeast, and mammalian systems, and allows identification of binding sites without chemical modification. Here we describe a detailed experimental and analytical workflow for conducting a LiP-MS experiment to detect small molecule-protein interactions, either in a single-dose (LiP-SMap) or a multiple-dose (LiP-Quant) format.
View Article and Find Full Text PDFMechanistic target of rapamycin complex 1 (mTORC1) senses nutrient availability to appropriately regulate cellular anabolism and catabolism. During nutrient restriction, different organs in an animal do not respond equally, with vital organs being relatively spared. This raises the possibility that mTORC1 is differentially regulated in different cell types, yet little is known about this mechanistically.
View Article and Find Full Text PDFMechanistic target of rapamycin complex 1 (mTORC1) controls growth by regulating anabolic and catabolic processes in response to environmental cues, including nutrients. Amino acids signal to mTORC1 through the Rag GTPases, which are regulated by several protein complexes, including GATOR1 and GATOR2. GATOR2, which has five components (WDR24, MIOS, WDR59, SEH1L and SEC13), is required for amino acids to activate mTORC1 and interacts with the leucine and arginine sensors SESN2 and CASTOR1, respectively.
View Article and Find Full Text PDFSummary: We present a flexible, user-friendly R package called for comprehensive quality control, analysis and interpretation of quantitative bottom-up proteomics data. protti supports the analysis of protein-centric data such as those associated with protein expression analyses, as well as peptide-centric data such as those resulting from limited proteolysis-coupled mass spectrometry analysis. Due to its flexible design, it supports analysis of label-free, data-dependent, data-independent and targeted proteomics datasets.
View Article and Find Full Text PDF