Publications by authors named "Jan-Philipp Mallm"

Single-cell DNA sequencing (scDNA-seq) enables decoding somatic cancer variation. Existing methods are hampered by low throughput or cannot be combined with transcriptome sequencing in the same cell. We propose HIPSD&R-seq (HIgh-throughPut Single-cell Dna and Rna-seq), a scalable yet simple and accessible assay to profile low-coverage DNA and RNA in thousands of cells in parallel.

View Article and Find Full Text PDF
Article Synopsis
  • - Chromothripsis is a process where a single catastrophic event causes significant genomic rearrangements, but its variability across different tumor clones and response to treatments is not well understood.
  • - This study investigates chromothripsis in p53-deficient medulloblastoma and neural stem cells, focusing on the genomic and transcriptomic changes involved.
  • - The researchers analyze the order of genetic events, explore subclonal variation, and identify how chromothripsis influences cancer development, targeted therapies, and the fitness of neural progenitor cells.
View Article and Find Full Text PDF

Phenotypic plasticity is a cause of glioblastoma therapy failure. We previously showed that suppressing the oligodendrocyte-lineage regulator SOX10 promotes glioblastoma progression. Here, we analyze SOX10-mediated phenotypic plasticity and exploit it for glioblastoma therapy design.

View Article and Find Full Text PDF

The T-box transcription factor T-bet is known as a master regulator of the T-cell response but its role in malignant B cells has not been sufficiently explored. Here, we conducted single-cell resolved multi-omics analyses of malignant B cells from patients with chronic lymphocytic leukemia (CLL) and studied a CLL mouse model with a genetic knockout of Tbx21. We found that T-bet acts as a tumor suppressor in malignant B cells by decreasing their proliferation rate.

View Article and Find Full Text PDF

In January 2021, the monitoring of circulating variants of SARS-CoV-2 was initiated in Germany under the Corona Surveillance Act, which was discontinued after July 2023. This initiative aimed to enhance pandemic containment, as specific amino acid changes, particularly in the spike protein, were associated with increased transmission and reduced vaccine efficacy. Our group conducted whole genome sequencing using the ARTIC protocol (currently V4) on Illumina's NextSeq 500 platform (and, starting in May 2023, on the MiSeq DX platform) for SARS-CoV-2 positive specimen from patients at Heidelberg University Hospital, associated hospitals, and the public health office in the Rhine-Neckar/Heidelberg region.

View Article and Find Full Text PDF

Recent advances in the genomics of glioblastoma (GBM) led to the introduction of molecular neuropathology but failed to translate into treatment improvement. This is largely attributed to the genetic and phenotypic heterogeneity of GBM, which are considered the major obstacle to GBM therapy. Here, we use advanced human GBM-like organoid (LEGO: Laboratory Engineered Glioblastoma-like Organoid) models and provide an unprecedented comprehensive characterization of LEGO models using single-cell transcriptome, DNA methylome, metabolome, lipidome, proteome, and phospho-proteome analysis.

View Article and Find Full Text PDF

Medulloblastomas with extensive nodularity are cerebellar tumors characterized by two distinct compartments and variable disease progression. The mechanisms governing the balance between proliferation and differentiation in MBEN remain poorly understood. Here, we employ a multi-modal single cell transcriptome analysis to dissect this process.

View Article and Find Full Text PDF

The location of nucleosomes in the human genome determines the primary chromatin structure and regulates access to regulatory regions. However, genome-wide information on deregulated nucleosome occupancy and its implications in primary cancer cells is scarce. Here, we conducted a genome-wide comparison of high-resolution nucleosome maps in peripheral blood B cells from patients with chronic lymphocytic leukemia (CLL) and healthy individuals at single-base-pair resolution.

View Article and Find Full Text PDF

Background: Here we present scSNPdemux, a sample demultiplexing pipeline for single-cell RNA sequencing data using natural genetic variations in humans. The pipeline requires alignment files from Cell Ranger (10× Genomics), a population SNP database and genotyped single nucleotide polymorphisms (SNPs) per sample. The tool works on sparse genotyping data in VCF format for sample identification.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers studied multiple myeloma, a type of blood cancer, to understand how it behaves differently in various parts of the body.
  • They found that patients had an average of 6 different tumor types and noticed some unique types in certain spots.
  • The study showed that tumor cells can act differently in different locations, which could affect how doctors plan treatments like immunotherapy.
View Article and Find Full Text PDF

Intratumor heterogeneity as a clinical challenge becomes most evident after several treatment lines, when multidrug-resistant subclones accumulate. To address this challenge, the characterization of resistance mechanisms at the subclonal level is key to identify common vulnerabilities. In this study, we integrate whole-genome sequencing, single-cell (sc) transcriptomics (scRNA sequencing), and chromatin accessibility (scATAC sequencing) together with mitochondrial DNA mutations to define subclonal architecture and evolution for longitudinal samples from 15 patients with relapsed or refractory multiple myeloma.

View Article and Find Full Text PDF

Single-cell sequencing of RNA (scRNA-seq) has advanced our understanding of cellular heterogeneity and signaling in developmental biology and disease. A large number of complementary assays have been developed to profile transcriptomes of individual cells, also in combination with other readouts, such as chromatin accessibility or antibody-based analysis of protein surface markers. As scRNA-seq technologies are advancing fast, it is challenging to establish robust workflows and up-to-date protocols that are best suited to address the large range of research questions.

View Article and Find Full Text PDF

The antiviral response induced by type I interferon (IFN) via the JAK-STAT signaling cascade activates hundreds of IFN-stimulated genes (ISGs) across human and mouse tissues but varies between cell types. However, the links between the underlying epigenetic features and the ISG profile are not well understood. We mapped ISGs, binding sites of the STAT1 and STAT2 transcription factors, chromatin accessibility, and histone H3 lysine modification by acetylation (ac) and mono-/tri-methylation (me1, me3) in mouse embryonic stem cells and fibroblasts before and after IFNβ treatment.

View Article and Find Full Text PDF

One goal of regenerative medicine is to rejuvenate tissues and extend lifespan by restoring the function of endogenous aged stem cells. However, evidence that somatic stem cells can be targeted in vivo to extend lifespan is still lacking. Here, we demonstrate that after a short systemic treatment with a specific inhibitor of the small RhoGTPase Cdc42 (CASIN), transplanting aged hematopoietic stem cells (HSCs) from treated mice is sufficient to extend the healthspan and lifespan of aged immunocompromised mice without additional treatment.

View Article and Find Full Text PDF

Keratinocyte cancers (KC) are the most prevalent malignancies in fair-skinned populations, posing a significant medical and economic burden to health systems. KC originate in the epidermis and mainly comprise basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (cSCC). Here, we combined single-cell multi-omics, transcriptomics, and methylomics to investigate the epigenomic dynamics during epidermal differentiation.

View Article and Find Full Text PDF

Hematopoietic stem cells (HSCs) mediate regeneration of the hematopoietic system following injury, such as following infection or inflammation. These challenges impair HSC function, but whether this functional impairment extends beyond the duration of inflammatory exposure is unknown. Unexpectedly, we observed an irreversible depletion of functional HSCs following challenge with inflammation or bacterial infection, with no evidence of any recovery up to 1 year afterward.

View Article and Find Full Text PDF

Upon aging, the function of the intestinal epithelium declines with a concomitant increase in aging-related diseases. ISCs play an important role in this process. It is known that ISC clonal dynamics follow a neutral drift model.

View Article and Find Full Text PDF

Virtually all patients with multiple myeloma become unresponsive to treatment over time. Relapsed/refractory multiple myeloma (RRMM) is accompanied by the clonal evolution of myeloma cells with heterogeneous genomic aberrations and profound changes of the bone marrow microenvironment (BME). However, the molecular mechanisms that drive drug resistance remain elusive.

View Article and Find Full Text PDF

Background: Cancer evolution depends on epigenetic and genetic diversity. Historically, in multiple myeloma (MM), subclonal diversity and tumor evolution have been investigated mostly from a genetic perspective.

Methods: Here, we performed an analysis of 42 MM samples from 21 patients by using enhanced reduced representation bisulfite sequencing (eRRBS).

View Article and Find Full Text PDF
Article Synopsis
  • Primary sclerosing cholangitis (PSC) involves chronic inflammation and fibrosis of bile ducts, potentially influenced by reduced levels of the bile acid receptor TGR5 in biliary epithelial cells (BECs).
  • Research demonstrated that TGR5 expression decreased in BECs of PSC patients and specific mouse models, with IL8 reducing TGR5 levels further and triggering an inflammatory response.
  • Treatment with norUDCA was shown to restore TGR5 levels in the BECs, suggesting a new therapeutic mechanism that could help mitigate PSC progression.
View Article and Find Full Text PDF

Nonalcoholic steatohepatitis (NASH) is a manifestation of systemic metabolic disease related to obesity, and causes liver disease and cancer. The accumulation of metabolites leads to cell stress and inflammation in the liver, but mechanistic understandings of liver damage in NASH are incomplete. Here, using a preclinical mouse model that displays key features of human NASH (hereafter, NASH mice), we found an indispensable role for T cells in liver immunopathology.

View Article and Find Full Text PDF