Bacterial biotherapeutic delivery vehicles have the potential to treat a variety of diseases. This approach obviates the need to purify the recombinant effector molecule, allows delivery of therapeutics via oral or intranasal administration, and protects the effector molecule during gastrointestinal transit. Lactic acid bacteria have been broadly developed as therapeutic delivery vehicles though risks associated with the colonization of a genetically modified microorganism have so-far not been addressed.
View Article and Find Full Text PDFGlycolysis and gluconeogenesis are reciprocal metabolic pathways that utilize different carbon sources. Pyruvate kinase catalyzes the irreversible final step of glycolysis, yet the physiological function of its regulation is poorly understood. Through metabolomics and enzyme kinetics studies, we discovered that pyruvate kinase activity is inhibited during gluconeogenesis in the soil bacterium .
View Article and Find Full Text PDFDespite recent advances in cancer therapy, ovarian cancer remains the most lethal gynecological cancer worldwide, making it crucial and of the utmost importance to establish novel therapeutic strategies. Adjuvant radiotherapy has been assessed historically, but its use was limited by intestinal toxicity. We recently established the role of in releasing IL-22 (LR-IL-22) as an effective radiation mitigator, and we have now assessed its effect in an ovarian cancer mouse model.
View Article and Find Full Text PDFGluco-oligosaccharides (GlcOS) are potential prebiotics that positively modulate beneficial gut commensals like lactobacilli. For the rational design of GlcOS as prebiotics or combined with lactobacilli as synbiotics, it is important to establish the structure requirements of GlcOS and specificity toward lactobacilli. Herein, the utilization of 10 GlcOS with varied degrees of polymerization (DP) and glycosidic linkages by 7 lactobacilli strains (Levilactobacillus brevis ATCC 8287, Limosilactobacillus reuteri ATCC PTA 6475, Lacticaseibacillus rhamnosus ATCC 53103, Lentilactobacillus buchneri ATCC 4005, Limosilactobacillus fermentum FUA 3589, Lactiplantibacillus plantarum WCFS1, and Lactobacillus gasseri ATCC 33323) was studied.
View Article and Find Full Text PDFLactic acid bacteria constitute a genetically diverse group of microorganisms with significant roles in the food industry, biotechnology, agriculture, and medicine. A core understanding of bacterial physiology in diverse environments is crucial to select and develop bacteria for industrial and medical applications. However, there is a lack of versatile tools to track (recombinant) protein production in lactic acid bacteria.
View Article and Find Full Text PDFProbiotic Limosilactobacillus reuteri DSM 17938 (DSM 17938) prolongs the survival of Treg-deficient scurfy (SF) mice and reduces multiorgan inflammation by a process requiring adenosine receptor 2A (A) on T cells. We hypothesized that L. reuteri-derived ecto-5'-nucleotidase (ecto-5'NT) activity acts to generate adenosine, which may be a central mediator for L.
View Article and Find Full Text PDFPrebiotics have long been used to modulate the gut microbiota and improve host health. Most established prebiotics are nondigestible carbohydrates, especially short-chain oligosaccharides. Recently, gluco-oligosaccharides (GlcOS) with 2-10 glucose residues and one or more O-glycosidic linkage(s) have been found to exert prebiotic potentials (not fully established prebiotics) because of their selective fermentation by beneficial gut bacteria.
View Article and Find Full Text PDFIrradiation can be an effective treatment for ovarian cancer, but its use is limited by intestinal toxicity. Thus, strategies to mitigate toxicity are important and can revitalize the current standard of care. We previously established that LR-IL-22 protects the intestine from WAI.
View Article and Find Full Text PDFGlucose-based short-chain oligosaccharides (gluco-oligosaccharides, GlcOS) have been established as functional food ingredients with health-promoting properties. Currently, GlcOS (e.g.
View Article and Find Full Text PDFFor decades, bacteria have been exploited as vectors for vaccines and therapeutics. However, the bacterial arsenal used has historically been limited to a few strains. Advancements in immunology, combined with the development of genetic tools, have expanded our strategies and capabilities to engineer bacteria using various delivery strategies.
View Article and Find Full Text PDF(1) Background: The systemic administration of therapeutic agents to the intestine including cytokines, such as Interleukin-22 (IL-22), is compromised by damage to the microvasculature 24 hrs after total body irradiation (TBI). At that time, there is significant death of intestinal microvascular endothelial cells and destruction of the lamina propria, which limits drug delivery through the circulation, thus reducing the capacity of therapeutics to stabilize the numbers of Lgr5+ intestinal crypt stem cells and their progeny, and improve survival. By its direct action on intestinal stem cells and their villus regeneration capacity, IL-22 is both an ionizing irradiation protector and mitigator.
View Article and Find Full Text PDFOral administration (gavage) of a second-generation probiotic, Lactobacillus reuteri (L. reuteri), that releases interleukin-22 (LR-IL-22) at 24 h after total-body irradiation (TBI) mitigates damage to the intestine. We determined that LR-IL-22 also mitigates partial-body irradiation (PBI) and whole-abdomen irradiation (WAI).
View Article and Find Full Text PDFThe mammalian microbiome encodes numerous secondary metabolite biosynthetic gene clusters; yet, their role in microbe-microbe interactions is unclear. Here, we characterized two polyketide synthase gene clusters (fun and pks) in the gut symbiont Limosilactobacillus reuteri. The pks, but not the fun, cluster encodes antimicrobial activity.
View Article and Find Full Text PDFBackground: Intestinal Peyer's patches (PPs) form unique niches for bacteria-immune cell interactions that direct host immunity and shape the microbiome. Here we investigate how peroral administration of probiotic bacterium Limosilactobacillus reuteri R2LC affects B lymphocytes and IgA induction in the PPs, as well as the downstream consequences on intestinal microbiota and susceptibility to inflammation.
Results: The B cells of PPs were separated by size to circumvent activation-dependent cell identification biases due to dynamic expression of markers, which resulted in two phenotypically, transcriptionally, and spatially distinct subsets: small IgD/GL7/S1PR1/Bcl6, CCR6-expressing pre-germinal center (GC)-like B cells with innate-like functions located subepithelially, and large GL7/S1PR1/Ki67/Bcl6, CD69-expressing B cells with strong metabolic activity found in the GC.
Streptococcus agalactiae (group B Streptococcus; GBS) remains a dominant cause of serious neonatal infections. One aspect of GBS that renders it particularly virulent during the perinatal period is its ability to invade the chorioamniotic membranes and persist in amniotic fluid, which is nutritionally deplete and rich in fetal immunologic factors such as antimicrobial peptides. We used next-generation sequencing of transposon-genome junctions (Tn-seq) to identify five GBS genes that promote survival in the presence of human amniotic fluid.
View Article and Find Full Text PDFLineages within the species have specialized to various hosts and their genomes reflect these adaptations. The gene cluster is conserved in most human and poultry isolates but is infrequent in rodent and porcine isolates. This gene cluster confers the transformation of glycerol into 3-hydroxy-propionaldehyde (reuterin), which can either be secreted and function as precursor of the antimicrobial compound acrolein or serve as an electron acceptor that enhances the organisms' growth rate.
View Article and Find Full Text PDFXanthones from the tropical fruit mangosteen (Garcinia mangostana) display anti-inflammatory and anti-oxidative activities. Here, we isolate and identify potential inducers of the aryl hydrocarbon receptor (AhR) and nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathways from mangosteen using a bioassay-guided strategy. Mangosteen fruit pericarp extracts were subjected to sequential solvent extractions, followed by chromatography coupled with NMR spectroscopy and mass spectrometric analyses for identification and isolation of pure compounds.
View Article and Find Full Text PDFThe incidence of metabolic syndrome continues to rise globally. In mice, intravenous administration of interleukin-22 (IL-22) ameliorates various disease phenotypes associated with diet-induced metabolic syndrome. In patients, oral treatment is favored over intravenous treatment, but methodologies to deliver IL-22 via the oral route are nonexistent.
View Article and Find Full Text PDFCross-feeding based on the metabolite 1,2-propanediol has been proposed to have an important role in the establishment of trophic interactions among gut symbionts, but its ecological importance has not been empirically established. Here, we show that growth of (syn. ) ATCC PTA 6475 is enhanced through 1,2-propanediol produced by UCC2003 and MG1655 from the metabolization of fucose and rhamnose, respectively.
View Article and Find Full Text PDFMicrobiol Resour Announc
February 2020
is a bacterial gut symbiont found in many vertebrate animals. The genetic heterogeneity of is likely to contribute to differences in ecological performance within a host. Here, we report the draft genome sequences of 12 strains of rodent origin.
View Article and Find Full Text PDFFEMS Microbiol Lett
November 2019
The Gram-positive bacterium Enterococcus faecium is becoming increasingly prevalent as a cause of hospital-acquired, antibiotic-resistant infections. A fundamental part of research into E. faecium biology relies on the ability to generate targeted mutants but this process is currently labour-intensive and time-consuming, taking 4 to 5 weeks per mutant.
View Article and Find Full Text PDFBackground/aim: Intestinal damage induced by total body irradiation (TBI) reduces leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5)-expressing stem cells, goblet, and Paneth cells, breaching the epithelial lining, and facilitating bacterial translocation, sepsis, and death.
Materials And Methods: Survival was measured after TBI in animals that received wild-type or recombinant bacteria producing interleukin-22 (IL-22). Changes in survival due to microbially delivered IL-22 were measured.
Phenolic acids are among the most abundant phenolic compounds in edible parts of plants. Lactic acid bacteria (LAB) metabolize phenolic acids, but the enzyme responsible for reducing hydroxycinnamic acids to phenylpropionic acids (HcrB) was only recently characterized in In this study, heterofermentative LAB species were screened for their hydroxycinnamic acid metabolism. Data on strain-specific metabolism in combination with comparative genomic analyses identified homologs of HcrB as putative phenolic acid reductases.
View Article and Find Full Text PDFThe gut microbiota harbors a diverse phage population that is largely derived from lysogens, which are bacteria that contain dormant phages in their genome. While the diversity of phages in gut ecosystems is getting increasingly well characterized, knowledge is limited on how phages contribute to the evolution and ecology of their host bacteria. Here, we show that biologically active prophages are widely distributed in phylogenetically diverse strains of the gut symbiont Nearly all human- and rodent-derived strains, but less than half of the tested strains of porcine origin, contain active prophages, suggesting different roles of phages in the evolution of host-specific lineages.
View Article and Find Full Text PDF