Swallowing, both nutritive and non-nutritive, is highly dysfunctional in children with Leigh Syndrome (LS) and contributes to the need for both gastrostomy and tracheostomy tube placement. Without these interventions aspiration of food, liquid, and mucus occur resulting in repeated bouts of respiratory infection. No study has investigated whether mouse models of LS, a neurometabolic disorder, exhibit dysfunctions in neuromuscular activity of swallow and breathing integration.
View Article and Find Full Text PDFThe control of the respiratory rhythm and airway motor activity is essential for life. Accumulating evidence indicates that the postinspiratory complex (PiCo) is crucial for generating behaviors that occur during the postinspiratory phase, including expiratory laryngeal activity and swallowing. Located in the ventromedial medulla, PiCo is defined by neurons co-expressing two neurotransmitter markers (ChAT and Vglut2/Slc17a6).
View Article and Find Full Text PDFSwallowing, both nutritive and non-nutritive, is highly dysfunctional in children with Leigh Syndrome (LS) and contributes to the need for both gastrostomy and tracheostomy tube placement. Without these interventions aspiration of food, liquid, and mucus occur resulting in repeated bouts of respiratory infection. No study has investigated whether mouse models of LS, a neurometabolic disorder, exhibit dysfunctions in neuromuscular activity of swallow and breathing integration.
View Article and Find Full Text PDFToxin-antidote systems are selfish genetic elements composed of a linked toxin and antidote. The toxin-antidote system in consists of a transmembrane toxin protein PEEL-1 which acts cell autonomously to kill cells. Here we investigate the molecular mechanism of PEEL-1 toxicity.
View Article and Find Full Text PDFThe purpose of this study is to gain insights into potential genetic factors contributing to the infant's vulnerability to Sudden Unexpected Infant Death (SUID). Whole Genome Sequencing (WGS) was performed on 144 infants that succumbed to SUID, and 573 healthy adults. Variants were filtered by gnomAD allele frequencies and predictions of functional consequences.
View Article and Find Full Text PDFThe sympathetic nervous system modulates arterial blood pressure. Individuals with obstructive sleep apnea (OSA) experience numerous nightly hypoxic episodes and exhibit elevated sympathetic activity to the cardiovascular system leading to hypertension. This suggests that OSA disrupts normal respiratory-sympathetic coupling.
View Article and Find Full Text PDFObstructive sleep apnea (OSA) is a prevalent sleep-related breathing disorder that results in multiple bouts of intermittent hypoxia. OSA has many neurological and systemic comorbidities, including dysphagia, or disordered swallow, and discoordination with breathing. However, the mechanism in which chronic intermittent hypoxia (CIH) causes dysphagia is unknown.
View Article and Find Full Text PDFChronic intermittent hypoxia (CIH) is a prevalent condition characterized by recurrent episodes of oxygen deprivation, linked to respiratory and neurological disorders. Prolonged CIH is known to have adverse effects, including endothelial dysfunction, chronic inflammation, oxidative stress, and impaired neuronal function. These factors can contribute to serious comorbidities, including metabolic disorders and cardiovascular diseases.
View Article and Find Full Text PDFNeuronal networks possess the ability to regulate their activity states in response to disruptions. How and when neuronal networks turn from physiological into pathological states, leading to the manifestation of neuropsychiatric disorders, remains largely unknown. Here, we propose that neuronal networks intrinsically maintain network stability even at the cost of neuronal loss.
View Article and Find Full Text PDFBreathing is vital and must be concurrently robust and flexible. This rhythmic behavior is generated and maintained within a rostrocaudally aligned set of medullary nuclei called the ventral respiratory column (VRC). The rhythmic properties of individual VRC nuclei are well known, yet technical challenges have limited the interrogation of the entire VRC population simultaneously.
View Article and Find Full Text PDFDravet syndrome (DS) is a devastating developmental epileptic encephalopathy marked by treatment-resistant seizures, developmental delay, intellectual disability, motor deficits, and a 10-20% rate of premature death. Most DS patients harbor loss-of-function mutations in one copy of , which has been associated with inhibitory neuron dysfunction. Here we developed an interneuron-targeting AAV human gene replacement therapy using cell class-specific enhancers.
View Article and Find Full Text PDFBackground: Volatile anesthetics induce hyperpolarizing potassium currents in spinal cord neurons that may contribute to their mechanism of action. They are induced at lower concentrations of isoflurane in noncholinergic neurons from mice carrying a loss-of-function mutation of the Ndufs4 gene, required for mitochondrial complex I function. The yeast NADH dehydrogenase enzyme, NDi1, can restore mitochondrial function in the absence of normal complex I activity, and gain-of-function Ndi1 transgenic mice are resistant to volatile anesthetics.
View Article and Find Full Text PDFObstructive sleep apnea (OSA) is a prevalent sleep-related breathing disorder that results in multiple bouts of intermittent hypoxia. OSA has many neurologic and systemic comorbidities including dysphagia, or disordered swallow, and discoordination with breathing. However, the mechanism in which chronic intermittent hypoxia (CIH) causes dysphagia is unknown.
View Article and Find Full Text PDFThis study provides an in-depth analysis of the distinct consequences of the opioid drugs morphine and fentanyl during opioid-induced respiratory depression (OIRD). We explored the physiological implications of both drugs on ventilation and airway patency in anaesthetized mice. Our results revealed a similar reduction in respiratory frequency with equivalent scaled dosages of fentanyl and morphine, though the onset of suppression was more rapid with fentanyl.
View Article and Find Full Text PDFPurpose: To gain insights into potential genetic factors contributing to the infant's vulnerability to Sudden Unexpected Infant Death (SUID).
Methods: Whole Genome Sequencing (WGS) was performed on 145 infants that succumbed to SUID, and 576 healthy adults. Variants were filtered by gnomAD allele frequencies and predictions of functional consequences.
Sighs prevent the collapse of alveoli in the lungs, initiate arousal under hypoxic conditions, and are an expression of sadness and relief. Sighs are periodically superimposed on normal breaths, known as eupnea. Implicated in the generation of these rhythmic behaviors is the preBötzinger complex (preBötC).
View Article and Find Full Text PDFDisorders of autonomic functions are typically characterized by disturbances in multiple organ systems. These disturbances are often comorbidities of common and rare diseases, such as epilepsy, sleep apnea, Rett syndrome, congenital heart disease or mitochondrial diseases. Characteristic of many autonomic disorders is the association with intermittent hypoxia and oxidative stress, which can cause or exaggerate a variety of other autonomic dysfunctions, making the treatment and management of these syndromes very complex.
View Article and Find Full Text PDFParkinson's disease (PD) is a neurodegenerative disorder characterized by progressive loss of dopaminergic neurons in the substantia nigra compacta (SNpc). In a mouse model of PD induced by the injection of 6-hydroxydopamine (6-OHDA) into the caudate putamen (CPu) dyspnea events are very common. Neuroanatomical and functional studies show that the number of glutamatergic neurons in the pre-Bötzinger Complex (preBötC) are reduced.
View Article and Find Full Text PDFBreathing needs to be tightly coordinated with upper airway behaviors, such as swallowing. Discoordination leads to aspiration pneumonia, the leading cause of death in neurodegenerative disease. Here, we study the role of the postinspiratory complex (PiCo) in coordinating breathing and swallowing.
View Article and Find Full Text PDF