Purpose: Blood pressure (BP) reduction after renal sympathetic denervation (RDN) is highly variable. Renal nerve stimulation (RNS) can localize sympathetic nerves. The RNS trial aimed to investigate the medium-term BP-lowering effects of the use of RNS during RDN, and explore if RNS can check the completeness of the denervation.
View Article and Find Full Text PDFBackground: Cardiovascular diseases (CVDs) are the leading cause of death worldwide. Despite the impact of CVDs, risk factors are often insufficiently controlled in patients at high risk. Recently, integrated multidisciplinary cardiovascular risk management (CVRM) programmes have been introduced in primary care.
View Article and Find Full Text PDFBackground: Renal nerve stimulation (RNS) is used to localize sympathetic nerve tissue for selective renal nerve sympathetic denervation (RDN). Examination of heart rate variability (HRV) provides a way to assess the state of the autonomic nervous system. The current study aimed to examine the acute changes in HRV caused by RNS before and after RDN.
View Article and Find Full Text PDFBackground: Renal nerve denervation (RDN) is developed as a potential treatment for hypertension. Recently, we reported the use of renal nerve stimulation (RNS) to localize sympathetic nerve tissue for subsequent selective RDN. The effects of RNS on arterial pressure dynamics remain unknown.
View Article and Find Full Text PDFPurpose: Recently we reported the use of renal nerve stimulation (RNS) during renal denervation (RDN) procedures. RNS induced changes in blood pressure (BP) and heart rate are not fully delineated yet. We hypothesized that electrical stimulation of the sympathetic nerve tissue in the renal artery would lead to an increase in BP and vagal stimulation would cause a decrease in BP.
View Article and Find Full Text PDFClin Res Cardiol
July 2018
Background: Hypertension is an important, modifiable risk factor for the development of atrial fibrillation (AF). Even after pulmonary vein isolation (PVI), 20-40% experience recurrent AF. Animal studies have shown that renal denervation (RDN) reduces AF inducibility.
View Article and Find Full Text PDFRenal sympathetic nerve denervation (RDN) is accepted as a treatment option for patients with resistant hypertension. However, results on decline in ambulatory blood pressure (BP) measurement (ABPM) are conflicting. The high rate of nonresponders may be related to increased systemic vascular stiffness rather than sympathetic overdrive.
View Article and Find Full Text PDFRenal denervation may be more effective if performed distal in the renal artery because of smaller distances between the lumen and perivascular nerves. The authors reviewed the angiographic results of 97 patients and compared blood pressure reduction in relation to the location of the denervation. No significant differences in blood pressure reduction or complications were found between patient groups divided according to their spatial distribution of the ablations (proximal to the bifurcation in both arteries, distal to the bifurcation in one artery and distal in the other artery, or distal to the bifurcation in both arteries), but systolic ambulatory blood pressure reduction was significantly related to the number of distal ablations.
View Article and Find Full Text PDFBlood pressure (BP) response to renal denervation (RDN) is highly variable and its effectiveness debated. A procedural end point for RDN may improve consistency of response. The objective of the current analysis was to look for the association between renal nerve stimulation (RNS)-induced BP increase before and after RDN and changes in ambulatory BP monitoring (ABPM) after RDN.
View Article and Find Full Text PDFBlood pressure response to renal denervation is highly variable, and the proportion of responders is disappointing. This may be partly because of accessory renal arteries too small for denervation, causing incomplete ablation. Renal nerve stimulation before and after renal denervation is a promising approach to assess completeness of renal denervation and may predict blood pressure response to renal denervation.
View Article and Find Full Text PDFObjective: Insulin detemir is a soluble long-acting basal insulin analog designed to overcome the limitations of conventional basal insulin formulations. Accordingly, insulin detemir has been compared with NPH insulin with respect to glycemic control (HbA1c, prebreakfast glucose levels and variability, and hypoglycemia) and timing of administration.
Research Design And Methods: People with type 1 diabetes (n = 408) were randomized in an open-label, parallel-group trial of 16-week treatment duration using either insulin detemir or NPH insulin.