Publications by authors named "Jan van den Ijssel"

Background: Outer membrane vesicles (OMVs) are nanoparticles released by Gram-negative bacteria and can be used as vaccines. Often, detergents are used to promote release of OMVs and to remove the toxic lipopolysaccharides. Lipopolysaccharides can be detoxified by genetic modification such that vesicles spontaneously produced by bacteria can be directly used as vaccines.

View Article and Find Full Text PDF

Physicochemical and immunochemical assays were applied to substantiate the relation between upstream processing and the quality of whole-cell pertussis vaccines. Bordetella pertussis bacteria were cultured on a chemically defined medium using a continuous cultivation process in stirred tank reactors to obtain uniform protein expression. Continuous culture favors the consistent production of proteins known as virulence factors.

View Article and Find Full Text PDF

Due to the rapidly increasing introduction of Haemophilus influenzae type b (Hib) and other conjugate vaccines worldwide during the last decade, reliable and robust analytical methods are needed for the quantitative monitoring of intermediate samples generated during fermentation (upstream processing, USP) and purification (downstream processing, DSP) of polysaccharide vaccine components. This study describes the quantitative characterization of in-process control (IPC) samples generated during the fermentation and purification of the capsular polysaccharide (CPS), polyribosyl-ribitol-phosphate (PRP), derived from Hib. Reliable quantitative methods are necessary for all stages of production; otherwise accurate process monitoring and validation is not possible.

View Article and Find Full Text PDF

The detoxification of tetanus toxin by formaldehyde is a crucial step in the production of tetanus toxoid. The inactivation results in chemically modified proteins and it determines largely the ultimate efficacy and safety of the vaccine. Currently, the quality of tetanus toxoid lots is evaluated in potency and safety tests performed in animals.

View Article and Find Full Text PDF

Outer membrane vesicles (OMV) contain immunogenic proteins and contribute to in vivo survival and virulence of bacterial pathogens. The first OMV vaccines successfully stopped Neisseria meningitidis serogroup B outbreaks but required detergent-extraction for endotoxin removal. Current vaccines use attenuated endotoxin, to preserve immunological properties and allow a detergent-free process.

View Article and Find Full Text PDF

Outer membrane vesicles (OMV) are used as a vaccine against Neisseria meningitidis serogroup B and are traditionally produced with detergent-extraction to remove toxic lipopolysaccharide. Engineered strains with attenuated lipopolysaccharide allowed the use of native vesicles (NOMV) with improved stability and immunogenicity. In the NOMV production process detergents are omitted and vesicle release is stimulated with EDTA extraction (a chelating agent) to enable a higher yield.

View Article and Find Full Text PDF

This study considers two aspects of the implementation of a biomass growth observer and specific growth rate controller in scale-up from small- to pilot-scale bioreactors towards a feasible bulk production process for whole-cell vaccine against whooping cough. The first is the calculation of the oxygen uptake rate, the starting point for online monitoring and control of biomass growth, taking into account the dynamics in the gas-phase. Mixing effects and delays are caused by amongst others the headspace and tubing to the analyzer.

View Article and Find Full Text PDF

Although Europe, Canada and the US have switched from cellular to acellular pertussis vaccines, most developing countries will continue to use the more cost effective cellular vaccine. Consistency of production however is the typical problem inherent to cellular vaccines. Optimising the production process of cellular pertussis bulk suspensions using product potency as a measure is not possible, since the mandatory animal test to measure potency has little discriminatory power.

View Article and Find Full Text PDF

The production of acellular pertussis in comparison with whole cell pertussis vaccines demands 5-25 times the amount of Bordetella pertussis' virulence factors, such as Pertussis Toxin (PT), to produce the same number of vaccine doses. An increase in the volumetric productivity by employing fed-batch rather than the currently used batch cultivations of B. pertussis could reduce the cost price of acellular pertussis vaccines.

View Article and Find Full Text PDF

Whooping cough vaccines are produced using different ranges of cultivation conditions and medium compositions, which are known to influence growth rate, virulence factor production and degradation, as well as the virulence factors' association to the cell. This study quantifies the impact of individual parameters on Pertussis Toxin (PT) production, using an optimized chemically defined medium as starting point, rather than a complex medium. A number of chemicals that are identified affect both growth rate and virulence factor production, which occur at similar levels in various commonly used production media.

View Article and Find Full Text PDF